U.S. flag

An official website of the United States government

PhenoCam images from JERGRASSLAND2 site, Jornada Experimental Range, New Mexico, USA since 2022

    This data set consists of repeat digital imagery from the tower-mounted digital cameras (hereafter, PhenoCams) at the Jornada Experimental Range. JER is a member of the PhenoCam network, which has as its mission to serve as a long-term, continental-scale, phenological observatory. Imagery is uploaded to the PhenoCam server every 30 minutes. The archived images provide a permanent record that can be visually-inspected to determine the phenological state of the vegetation at any point in time. Vegetation greenness metrics (e.g., GCC) derived from the ratio of the green color band to sum of red, green, and blue color bands serve as proxies for vegetation greenness. Greenness metrics can be extracted from the images using simple image processing methods in 1-day or 3-day increments.

    PhenoCam images from JERGRASSLAND site, Jornada Experimental Range, New Mexico, USA since 2019

      This data set consists of repeat digital imagery from the tower-mounted digital cameras (hereafter, PhenoCams) at the Jornada Experimental Range. JER is a member of the PhenoCam network, which has as its mission to serve as a long-term, continental-scale, phenological observatory. Imagery is uploaded to the PhenoCam server every 30 minutes. The archived images provide a permanent record that can be visually-inspected to determine the phenological state of the vegetation at any point in time. Vegetation greenness metrics (e.g., GCC) derived from the ratio of the green color band to sum of red, green, and blue color bands serve as proxies for vegetation greenness. Greenness metrics can be extracted from the images using simple image processing methods in 1-day or 3-day increments.

      Data from: Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems

        This study was initiated to evaluate, during the following corn (*Zea mays* L.) phase, the effects of interseeded cover crops on soil temperature, soil water balances, evapotranspiration, infiltration, and yield and water use efficiency of corn. The study was conducted at the USDA Beltsville Agricultural Research Center, Beltsville, MD from 2017 through 2020. The cropping systems under study were primarily sequences of corn-soybean (*Glycine max* L.)-wheat (*Triticum aestivum* L.)-double crop soybean all planted with no-tillage management.

        Data from: Efficacy of deltamethrin and pirimiphos-methyl in layer-treated maize against the larger grain borer and the maize weevil

          Two grain surface treatment insecticides (deltamethrin and pirimiphos-methyl were evaluated in laboratory assays as a surface treatment for maize to control adult Prostephanus truncatus and Sitophilus zeamais. Both insecticides were applied to 20 g of maize placed in a vial or to the upper one half, one fourth, or one-eighth layer of the maize. Insects were either added to the vials before or after the maize. Mortality, progeny production, and insect damaged kernels (IDK) were then evaluated for each vial.

          Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Soybean Datasets

            This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for soybean [*Glycine max* (L.) Merr.] grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1995, 2003, 2004, 2010 and 2019 on large, precision weighing lysimeters, each in the center of a 4.44 ha square field.

            Weighing Lysimeter Data for The Bushland, Texas, Soybean Datasets

              This dataset consists of five years of weighing lysimeter data for soybean [Glycine max (L.) Merr.] grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1995, 2003, 2004, 2010 and 2019. In 1995, 2003, 2004, and 2010, soybean was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. In 2019, soybean was grown on four large, precision weighing lysimeters, each in the center of a 4.4-ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

              Agronomic Calendars for the Bushland, Texas Soybean Datasets

                This dataset consists of agronomic calendars for five seasons of soybean [*Glycine max* (L.) Merr.] grown for seed at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1994, 2003, 2004, 2010 and 2019. In 1995, 2003, 2004, and 2010, soybean was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. In 2019, soybean was grown on four large, precision weighing lysimeters and their surrounding 4.44 ha square fields. The entire datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data.