U.S. flag

An official website of the United States government

The RHEM Web Tool

    RHEM is designed to provide sound, science-based technology to model and predict runoff and erosion rates on rangelands and to assist in assessing rangeland conservation practice effects. RHEM is a newly conceptualized, process-based erosion prediction tool specific for rangeland application, based on fundamentals of infiltration, hydrology, plant science, hydraulics and erosion mechanics.

    Stream Temperature Modeling and Monitoring: Air Temperature Based Thermal Stream Habitat Model

      The Air Temperature Based Thermal Stream Habitat Model was originally developed from weather station information across the Columbia River basin in the Pacific Northwest. Multiple regression was used to predict mean annual air temperatures from elevation, latitude, and longitude with good success R^2 ~ 0.89). The model was developed as an alternative to PRISM data interpolations based on spline surface smoothing and should more accurately represent thermal conditions in stream valleys.

      Stream Temperature Modeling and Monitoring: Multiple Regression Stream Temperature Model

        This simple Stream Temperature Modeling and Monitoring approach uses thermograph data and geomorphic predictor variables from GIS software and digital elevation models (DEM). Multiple regression models are used to predict stream temperature metrics throughout a stream network with moderate accuracy (R^2 ~ 0.65). The models can provide basic descriptions of spatial patterns in stream temperatures, suitable habitat distributions for aquatic species, or be used to assess temporal trends related to climate or management activities if multiple years of temperature data are available.

        Data from: Assessment of town and park characteristics related to physical activity in the Lower Mississippi Delta

          The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming.

          NorWeST Stream Temperature Regional Database and Model

            The NorWeST webpage hosts stream temperature data and climate scenarios in a variety of user-friendly digital formats for streams and rivers across the western U.S. Temperature data and model outputs, registered to NHDPlus stream lines, are posted to the website after QA/QC procedures and development of the final temperature model within a river basin.

            The National Stream Internet project

              National Stream Internet (NSI) project was developed as a means of providing a consistent, flexible analytical infrastructure that can be applied with many types of stream data anywhere in the country. A key part of that infrastructure is the NSI network, a digital GIS layer which has a specific topological structure that was designed to work effectively with SSNMs. The NSI network was derived from the National Hydrography Dataset Plus, Version 2 (NHDPlusV2) following technical procedures that ensure compatibility with SSNMs.

              Sierra Ancha Experimental Forest (SAEF) Climate Data: 2000 - 2011

                The Sierra Ancha Experimental Forest (SAEF) is a research area focused on studying watershed management. The Experimental Forest lies roughly 30 miles (48 km) northeast of Globe, Arizona, and is located within the Tonto National Forest. Tabular climate data for the SAEF are presented, including monthly and daily measurements for precipitation, temperature, and wind, for the years 2000 through 2011.

                Geomorphic Road Analysis and Inventory Package (GRAIP)

                  Geomorphic Road Analysis and Inventory Package (GRAIP) is designed to help land managers learn about the impacts of road systems on erosion and sediment delivery to streams. GRAIP couples analytical tools with an inventory process to build an approach to roads analysis that can be locally calibrated in a repeatable fashion and with minimal effort. The full scope of GRAIP includes methods to inventory roads and analyze the inventory for surface erosion, gully risk, landslide risk and stream crossing failure risks. Methods to measure road surface erosion from sample sites are also included.