U.S. flag

An official website of the United States government

Other Access

The information on this page (the dataset metadata) is also available in these formats:

JSON RDF

via the DKAN API

Data Extent

CameraTrapDetectoR Species Model

CameraTrapDetectoR is an R package that uses deep learning computer vision models to automatically detect, count, and classify common North American domestic and wild species in camera trap images. Data for all versions of the taxonomic species model are located in this dataset. This data is automatically downloaded, extracted, and deployed in the tool's deploy_model function. Additional information about the R package and the training data can be found in the package's Github repository: https://github.com/CameraTrapDetectoR/CameraTrapDetectoR

This research used resources provided by the SCINet project and the AI Center of Excellence of the USDA Agricultural Research Service, ARS project number 0500-00093-001-00-D.

List of Resources:

  • species_v1.zip is a folder containing the model weights, model architecture, and class label dictionary for the first version of the species model. The model architecture is a FasterRCNN object detection model with a ResNet50 backbone.
  • species_v2.zip is a folder containing the model weights, model architecture, and class label dictionary for the second version of the species model. The model architecture is a FasterRCNN object detection model with a ResNet50 backbone, trained on the ARS SCINet Atlas cluster. This model identifies and counts 78 North American species in camera trap images, including humans vehicles and a background class. The training dataset contains 169,352 unique images, with an average of 2199 images per class excluding background class. The (min, max) range of images count per class is (107, 7027); this class imbalance was addressed with a suite of data augmentations and weighted random sampling. Images were acquired from a total of 26 databases across North America.
FieldValue
Tags
Modified
2023-05-09
Release Date
2023-05-04
Frequency
Not Planned
Identifier
cf3c1d32-7a3f-4bd5-a802-54d728304344
Spatial / Geographical Coverage Area
POLYGON ((-161.89453125 70.470124401839, -161.89453125 57.474889007664, -144.66796875 60.549536115658, -103.53515625 10.758479494301, -55.01953125 46.747889039741, -87.36328125 69.009872311641))
Publisher
Ag Data Commons
Spatial / Geographical Coverage Location
North America
Temporal Coverage
January 1, 2022
License
Contact Name
Burns, Amira
Contact Email
Public Access Level
Public
Program Code
005:040 - Department of Agriculture - National Research
Bureau Code
005:18 - Agricultural Research Service