U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Other Access

The information on this page (the dataset metadata) is also available in these formats:

JSON RDF

via the DKAN API

Data from: Association mapping of agronomic and quality traits in USDA pea single-plant collection

Association mapping is an efficient approach for the identification of the molecular basis of agronomic traits in crop plants. For this purpose in pea (Pisum sativum L.), we genotyped and phenotyped individual lines of the single-plant-derived core collection of the USDA pea collection including accessions from 330 landraces and cultivars of Pisum sativum subsp. sativum var. sativum, 28 P. sativum subsp. elatius var. elatius, 16 P. sativum subsp. sativum var. arvense, four P. sativum subsp. elatius var. pumilio, three P. abyssinicum, two P. fulvum, and one P. sativum subsp. transcaucasicum. These 384 accessions were collected or donated from a total of 64 countries. The accessions were genotyped with 256 informative SNPs using a primer extension chemistry and matrix-assisted laser desorption/ionization (MALDI–TOF) mass spectrometry assay. Genetic structure analysis showed that the collection was structured into two main groups, corresponding roughly to the cultivated types/landraces and the more primitive form species and subspecies, with some intermediates. Linkage disequilibrium of pairwise loci and population structure of the collection were analyzed, and an association analysis between SNP genotypes and 25 valuable traits such as disease resistance, seed type/color, flower color, seed low molecular weight carbohydrate concentration, and seed mineral nutrient concentration was performed using a mixed linear model. A total of 71 marker–trait associations were detected as significant with 1–34 markers per trait based on the false discovery rate (FDR < 0.05). This study demonstrates the potential of using association mapping to identify markers for pea breeding.

FieldValue
Tags
Modified
2022-04-08
Release Date
2019-02-06
Identifier
f10719ac-d5a3-4f8b-8115-54cad7a5ba89
Publisher
Molecular Breeding
License
Contact Name
McGee, Rebecca J.
Contact Email
Public Access Level
Public
Program Code
005:040 - Department of Agriculture - National Research
Bureau Code
005:18 - Agricultural Research Service