U.S. flag

An official website of the United States government

Other Access

The information on this page (the dataset metadata) is also available in these formats:


via the DKAN API

Data Extent

Data from: Efficient imaging and computer vision detection of two cell shapes in young cotton fibers

Representative images and manually annotated distributions of apical diameter for cotton accessions tested by computer vision.


Cotton plants were grown in a well-controlled greenhouse in the NC State Phytotron as described previously (Pierce et al, 2019). Flowers were tagged on the day of anthesis and harvested three days post anthesis (3 DPA). The distinct fiber shapes had already formed by 2 DPA (Stiff and Haigler, 2016; Graham and Haigler, 2021), and fibers were still relatively short at 3 DPA, which facilitated the visualization of multiple fiber tips in one image.

Cotton fiber sample preparation, digital image collection, and image analysis:

Ovules with attached fiber were fixed in the greenhouse. The fixative previously used (Histochoice) (Stiff and Haigler, 2016; Pierce et al., 2019; Graham and Haigler, 2021) is obsolete, which led to testing and validation of another low-toxicity, formalin-free fixative (#A5472; Sigma-Aldrich, St. Louis, MO; Fig. S1). The boll wall was removed without damaging the ovules. (Using a razor blade, cut away the top 3 mm of the boll. Make about 1 mm deep longitudinal incisions between the locule walls, and finally cut around the base of the boll.) All of the ovules with attached fiber were lifted out of the locules and fixed (1 h, RT, 1:10 tissue:fixative ratio) prior to optional storage at 4°C. Immediately before imaging, ovules were examined under a stereo microscope (incident light, black background, 31X) to select three vigorous ovules from each boll while avoiding drying. Ovules were rinsed (3 x 5 min) in buffer [0.05 M PIPES, 12 mM EGTA. 5 mM EDTA and 0.1% (w/v) Tween 80, pH 6.8], which had lower osmolarity than a microtubule-stabilizing buffer used previously for aldehyde-fixed fibers (Seagull, 1990; Graham and Haigler, 2021). While steadying an ovule with forceps, one to three small pieces of its chalazal end with attached fibers were dissected away using a small knife (#10055-12; Fine Science Tools, Foster City, CA). Each ovule piece was placed in a single well of a 24-well slide (#63430-04; Electron Microscopy Sciences, Hatfield, PA) containing a single drop of buffer prior to applying and sealing a 24 x 60 mm coverslip with vaseline.

Samples were imaged with brightfield optics and default settings for the 2.83 mega-pixel, color, CCD camera of the Keyence BZ-X810 imaging system (www.keyence.com; housed in the Cellular and Molecular Imaging Facility of NC State). The location of each sample in the 24-well slides was identified visually using a 2X objective and mapped using the navigation function of the integrated Keyence software. Using the 10X objective lens (plan-apochromatic; NA 0.45) and 60% closed condenser aperture setting, a region with many fiber apices was selected for imaging using the multi-point and z-stack capture functions. The precise location was recorded by the software prior to visual setting of the limits of the z-plane range (1.2 µm step size). Typically, three 24-sample slides (representing three accessions) were set up in parallel prior to automatic image capture. The captured z-stacks for each sample were processed into one two-dimensional image using the full-focus function of the software. (Occasional samples contained too much debris for computer vision to be effective, and these were reimaged.)

Release Date
Not Planned
Spatial / Geographical Coverage Area
POINT (-78.671709001064 35.786662173562)
Ag Data Commons
Spatial / Geographical Coverage Location
Raleigh, North Carolina
Temporal Coverage
August 1, 2020 to April 30, 2022
Contact Name
Billings, Grant T.
Contact Email
Public Access Level
Program Code
005:040 - Department of Agriculture - National Research
Bureau Code
005:18 - Agricultural Research Service