U.S. flag

An official website of the United States government

Other Access

The information on this page (the dataset metadata) is also available in these formats:


via the DKAN API

Data from: Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention

Insulin resistance has wide-ranging effects on metabolism but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns, and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ~45% of V̇O2peak, ~63 W) and recovery in overnight-fasted sedentary, obese, insulin resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ~14 wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise—regardless of pre- vs. post-intervention status—highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of non-oxidative fates of glucose (e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside [possible glycerolipid synthesis metabolite]), and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites (“non-self” molecules, from microbes or foods), including benzoic acid/salicylic acid/salicylaldehyde, hexadecanol/octadecanol/dodecanol, and chlorogenic acid. In addition, many non-annotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results, and previously-reported plasma acylcarnitine profiles, support the principle that most metabolic changes during sub-maximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status.

Supporting Materials include graphs of blood patterns of metabolites in adult women during a sub-maximal exercise bout and recovery period, and primary data in spreadsheet format on model performance, exercise and recovery, and correlation statistics for metabolites.

Journal information -- Am J Physiol, Endo & Metabolism, Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention.

Release Date
Ag Data Commons
Contact Name
Adams, Sean H.
Contact Email
Public Access Level
Program Code
005:040 - Department of Agriculture - National Research
Bureau Code
005:18 - Agricultural Research Service