U.S. flag

An official website of the United States government

Default group image
NAL Geospatial Catalog


Creative Commons Attribution

Other Access

The information on this page (the dataset metadata) is also available in these formats:


via the DKAN API

Data Extent

SGS-LTER Graduate Student Research: Decomposition Rates as Biochemical Responses of US Great Plains Grasslands to Regional and Interannual Variability in Precipitation (1999-2001)

This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Digital Collections of Colorado (http://digitool.library.colostate.edu/R/?func=collections&collection_id=...). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. Additional information and referenced materials can be found: http://hdl.handle.net/10217/85531.

Carbon (C) sequestration potential in grasslands is thought to be high due to the large soil organic carbon pools characteristic of these ecosystems. Inputs of C (aboveground net primary productivity) are highly correlated to precipitation across the Great Plains region; however, changes in C pool size at a specific site are governed by the relative input and output rates across time. Our objective was to quantify the ecosystem C response of three grassland community types (shortgrass steppe, mixed grass and tallgrass prairie) to interannual variation in precipitation. At five sites across a precipitation gradient in the Great Plains, we measured net primary production (NPP), soil respiration (SRESP), and litter decomposition rates for three consecutive years. NPP, SRESP, and litter decomposition increased from shortgrass steppe (175, 454, and 47 g C m-2 yr-1) to tallgrass prairie (408, 1221, and 348 g C m-2 yr-1 for NPP, SRESP, and litter decomposition respectively). Increased growing season precipitation between study years resulted in increased NPP, SRESP, and litter decomposition at almost all sites. However, the regional patterns of the interannual NPP, SRESP, and litter decomposition responses differ from each other. This data suggests NPP and SRESP are more sensitive to interannual changes in precipitation than litter decomposition, and that shortgrass steppe sites are more responsive to interannual variability in precipitation than mixed grass and tallgrass prairie.

Release Date
Spatial / Geographical Coverage Area
POLYGON ((-104.785833 40.8575, -104.730556 40.8575, -104.730556 40.800278, -104.785833 40.800278))
Publisher Not Specified
Temporal Coverage
September 1, 1999 to June 30, 2001
Creative Commons Attribution
Contact Name
Burke, Ingrid
Contact Email
Public Access Level
Program Code
005:040 - Department of Agriculture - National Research
Bureau Code
005:18 - Agricultural Research Service
Source ID
Harvested from Geodata Harvest
Harvest Source TitleGeodata Harvest
Harvest Source URIhttps://geodata.nal.usda.gov/geonetwork/srv/eng/csw
Last Harvest PerformedSat, 01/18/2020 - 13:37

Metadata Source

NAL Geospatial Catalog