U.S. flag

An official website of the United States government

The Range-Wide Bull Trout eDNA Project - USFS RMRS

    The bull trout (*Salvelinus confluentus*) eDNA survey results Online Map allows users to view the survey results in an interactive map by coupling 1) predictions from the range-wide, spatially precise Climate Shield model on the location of natal habitats of bull trout with 2) a sampling template for every 8-digit hydrologic unit in the historical range of bull trout, based on the probability of detecting bull trout presence using environmental DNA (eDNA) sampling. The map provides the ability to zoom in and look at an area of interest, as well as to create queries or select an area to download points as a shapefile.

    Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice

      This study describes how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. A sample monitoring dataset is used to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA.

      RF-CLASS: Remote-sensing-based Flood Crop Loss Assessment Service System

        The Remote-sensing-based Flood Crop Loss Assessment Service System (RF-CLASS) is an Earth Observation (EO) based flood crop loss assessment cyber-service system operated by the Center for Spatial Information Science and Systems (CSISS), George Mason University. RF-CLASS supports flood-related crop statistics and insurance decision-making.

        pySnobal

          Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

          Automated Water Supply Model (AWSM)

            Automated Water Supply Model (AWSM) was developed at the USDA Agricultural Research Service in Boise, ID, to streamline the workflow used to forecast the water supply of multiple water basins.

            Spatial Modeling for Resources Framework (SMRF)

              Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

              Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

                This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.