U.S. flag

An official website of the United States government

Long Term Agroecosystem Research Overview

In pursuit of sustainable U.S. agriculture, the U.S. Department of Agriculture (USDA) launched the Long-Term Agroecosystem (LTAR) network. The LTAR network is composed of 18 locations distributed across the contiguous United States working together to address national and local agricultural priorities and advance the sustainable intensification of U.S. agriculture.

The LTAR network represents a range of major U.S. agroecosystems, including annual row cropping systems, grazinglands, and integrated systems representative of roughly 49 percent of cereal production, 30 percent of forage production, and 32 percent of livestock production in the United States. Furthermore, the LTAR sites span geographic and climatic gradients representing a variety of challenges and opportunities to U.S. agriculture.

The LTAR network uses experimentation and coordinated observations to develop a national roadmap for the sustainable intensification of agricultural production. While the LTAR network is a new network, experimentation and measurements began at some LTAR sites more than 100 years ago, while other locations started their research as recently as 19 years ago.

A primary goal of LTAR is to develop and to share science-based findings with producers and stakeholders. Tools, technologies, and management practices resulting from LTAR network science will be applied to the sustainable intensification of U.S. agriculture. Technical innovations, including new production techniques, genetics, and sensor infrastructure applied at the farm/ranch level can increase the capacity for adaptive management, reduce time and operational costs, and increase profits and the quality of life for producers.

For full list of LTAR sites, view the sites matrix at https://ltar.ars.usda.gov/sites/.

For more information about the LTAR network visit: https://ltar.ars.usda.gov

Filter by author name

Filter by user-supplied tag

Datasets

120 datasets

Assessing the rate and reversibility of large herbivore effects on community composition in a semi-arid grassland ecosystem with GZTX data on the Central Plains Experimental Range, Nunn, Colorado, USA 1992-2017

    Data supporting empirical evaluation of the effects of grazing on semi-arid grassland hypothesized by State-and-Transition models using a 25-year grazing exclosure reversal experiment in the Great Plains, US. We document rapid, reversible and symmetric effects of the imposition and removal of grazing between 1992-2017 due to differences in the rate of increase in cover of C3 midgrasses, litter and bare ground.

    Data from: Compound hydroclimatic extremes in a semi-arid grassland: Drought, deluge and the carbon cycle

      These data were generated to evaluate the effects of compound hydroclimatic extremes – a deluge during drought – on production and carbon cycling in a semi-arid (shortgrass steppe) grassland in Colorado (USA). The study experimentally imposed an extreme drought and then interrupted this drought with either a single extreme deluge event or the equivalent amount of precipitation provided in several smaller events

      Data from: Can measurements of foraging behaviour predict variation in weight gains of free-ranging cattle?

        This study examines whether four different ways of measuring daily foraging behaviour (grazing-bout duration, grazing time per day, velocity while grazing, and turn angle while grazing) were related to weight gain by free-ranging yearling steers grazing semiarid rangeland. Data include measurements interpreted from neck collars supporting a solar-powered device that measured GPS locations at 5 min intervals and an accelerometer to predict grazing activity at 4 sec intervals.

        Central Plains Experimental Range Study for Long-Term Agroecosystem Research in Nunn, Colorado

          The Central Plains Experimental Range (CPER) is a site with the The Long-Term Agroecosystem Research (LTAR) Network, which consists of 18 sites across the continental United States (US) sponsored by the US Department of Agriculture, Agricultural Research Service, universities and non-governmental organizations. LTAR scientists seek to determine ways to ensure sustainability and enhance food production (and quality) and ecosystem services at broad regional scales. They are conducting common experiments across the LTAR network to compare traditional production strategies (“business as usual or BAU) with aspirational strategies, which include novel technologies and collaborations with farmers and ranchers.