Rapid Carbon Assessment (RaCA)

The Rapid Carbon Assessment (RaCA) was initiated by the USDA-NRCS Soil Science Division in 2010 with the following objectives:

  • To develop statistically reliable quantitative estimates of amounts and distribution of carbon stocks for U.S. soils under various land covers and to the extent possible, differing agricultural management.
  • To provide data to support model simulations of soil carbon change related to land use change, agricultural management, conservation practices, and climate change.
  • To provide a scientifically and statistically defensible inventory of soil carbon stocks for the U.S.
Maps and Multimedia

LANDFIRE

LANDFIRE (LF), Landscape Fire and Resource Management Planning Tools, is a shared program between the wildland fire management programs of the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior, providing landscape scale geo-spatial products to support cross-boundary planning, management, and operations. LANDFIRE is a program that provides over 20 national geo-spatial layers (e.g. vegetation, fuel, disturbance, etc.), databases, and ecological models that are available to the public for the US and insular areas.

Agroecosystems & Environment

Dairy Gas Emissions Model (DairyGEM)

The Dairy Gas Emissions Model (DairyGEM) uses process level simulation and process related emission factors to predict ammonia, hydrogen sulfide, VOC and greenhouse gas emissions along with the carbon, energy and water footprints of dairy production systems.

Agroecosystems & Environment

Data from: Effects of conifer treatments on soil nutrient availability and plant composition in sagebrush steppe

Conifer control in sagebrush steppe of the western United States causes various levels of site disturbance influencing vegetation recovery and resource availability. The data set presented in this article include growing season availability of soil micronutrients and levels of total soil carbon, organic matter, and N spanning a six year period following western juniper (Juniperus occidentalis spp. occidentalis) reduction by mechanical cutting and prescribed fire of western juniper woodlands in southeast Oregon. These data can be useful to further evaluate the impacts of conifer woodland reduction to soil resources in sagebrush steppe plant communities.

Agroecosystems & Environment

International Soil Carbon Network

The ISCN is a self-chartered, international, collaborative organization composed of scientists who recognize a need for and value in large-scale synthesis of soil carbon science.

Agroecosystems & Environment

Data from: Underestimation of N2O emissions in a comparison of the DayCent, DNDC, and EPIC 1 models

Process-based models are increasingly used to study mass and energy fluxes from agro-ecosystems, including nitrous oxide (N2O) emissions from agricultural fields. This data set is the output of three process-based models – DayCent, DNDC, and EPIC – which were used to simulate fluxes of N2O from dairy farm soils. The individual models' output and the ensemble mean output were evaluated against field observations from two agricultural research stations in Arlington, WI and Marshfield, WI. These sites utilize cropping systems and nitrogen fertilizer management strategies common to Midwest dairy farms.

Dairy CAP logo

Eddy Covariance Data from Office of Naval Research Biofuel project on Maui

These data come from three eddy covariance (EC) towers that were installed as part of a project to assess the productivity of sugarcane agricultural systems for biofuel production. These towers were operated from 2011-2013 in Maui, USA. Major observational parameters include net carbon exchange, evapotranspiration, and energy fluxes.

Eddy Covariance tower establishment in Maui

Data from: Soil organic carbon and isotope composition response to topography and erosion in Iowa

The dataset includes topographic information, soil properties, and 137Cs levels collected from a 15 ha cropland under soybean/maize (C3/C4) rotation in June 2002. The cropland is located in the central-western part of the Walnut Creek watershed, Story County, Iowa. 128 sampling locations were collected and three soil samples were obtained using a 3.2 cm-diameter push probe from the 0 to 30 cm soil layer within a 1 m × 1 m quadrat at each sampling location. Deeper soil samples were collected from 30 to 50 cm layers in locations where sediment deposition was observed. The three samples from each sampling location were mixed and analyzed to determine soil properties, SOC content and its carbon (C) isotope composition (C12 to C13 ratio), and 137Cs levels. For landscape topography of each sampling location, topographic metrics were derived from a digital elevation mode using LiDAR (Light Detection and Ranging) data. These data are useful in investigating the fate of eroded SOC in croplands and its responses to landscape topography.

Agroecosystems & Environment