U.S. flag

An official website of the United States government

Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks: site environmental data, individual tree stem and leaf physiological data, and analyses

    We investigated whether oak species in the Chiricahua Mountains were 1) elevationally stratified, 2) whether that stratification was correlated with temperature minima, maxima, and water availability, 3) if physiological tolerances to freezing or drought stress correlated with elevation ranges, and 4) if traits important to local (elevation) distributions were correlated with climatic values of the wider species ranges. Data were collected at field sites from wild, adult trees in the Chiricahua Mountains, Arizona, USA from 2014-2015.

    Useful to Usable: Developing usable climate science for agriculture

      Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers, was a USDA-funded research and extension project designed to improve the resilience and profitability of U.S. farms in the Corn Belt amid a changing climate. Over a six-year period from April 2011 - April 2017, 122 faculty, staff, graduate students, and undergraduate students from ten Midwestern universities contributed to this interdisciplinary project. Our team integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and outreach, communication, and marketing to improve the use and uptake of climate information for agricultural decision making. Together, and with members of the agricultural community, we developed a series of decision support tools, resource materials, and training methods to support data-driven decision making and the adoption of climate-resilient practices.

      Data from: Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

        For genome assembly of *C. zofingiensis* strain SAG 211–14, we used a hybrid approach blending short reads (Illumina), long reads (Pacific Biosciences of California), and whole-genome optical mapping (OpGen) (SI Appendix, SI Text and Datasets S1–S19, and refer to SI Appendix, Datasets Key). The combined power of these approaches yielded a high-quality haploid nuclear genome of *C. zofingiensis* of ∼58 Mbp distributed over 19 chromosomes (Fig. 2) in the tradition of model organism projects, as opposed to the fragmentary “gene-space” assemblies typical of modern projects using high-throughput methods and associated software. Approximately 99% of reads from the Illumina genomic libraries were accounted for, and nonplaceholder chromosomal sequence covers ∼94% of the optical map. Because no automated pipeline was found able to achieve the desired quality, methods are described in SI Appendix, SI Text.

        Wildland Urban Interface Project Maps

          For each map listed, we provided an Adobe Acrobat file (PDF), a compressed Postscript file (ZIP) for plotter output, and metadata files in both HTML and text formats. Short descriptions of each map are available in the abstract portion of the metadata files.