U.S. flag

An official website of the United States government

Rock Chute Design

    This Excel spreadsheet is included as a tool to design rock chutes for conservation practices. Median size for rock is determined along with the chute hydraulics and dimensions. This spreadsheet is based on "Design of Rock Chutes" by Robinson, Rice, and Kadavy, ASAE Vol. 41(3), pp. 621-626, 1998. One Spreadsheet version is included. Rock_Chute.xls is intended for Excel in Microsoft Office 97. The program was developed by the Iowa design staffa nd modified by the WI-engineering staff. The Excel file (.xls) ispassword protected. A Glossary is included.

    Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice

      This study describes how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. A sample monitoring dataset is used to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA.

      Wind Erosion Prediction System (WEPS)

        This site provides access to the WEPS software version used for official purposes by NRCS field offices and Technical Service providers. NRCS developed and maintains the components of the WEPS Databases and information on this site. The USDA-Agricultural Research Service is the lead agency for developing the science in the WEPS model and the model interface. WEPS predicts many forms of soil erosion by wind such as saltation-creep and suspension including PM-10.

        Soil and Water Hub Modeling Datasets

          The Soil and Water Hub is jointly developed by USDA Agricultural Research Service (USDA-ARS) and Texas A&M AgriLife Research, part of The Texas A&M University System. Modeling dataset resources are available for download for use with software tools Agricultural Policy/Environmental eXtender Model (APEX), Soil and Water Assessment Tool (SWAT), ArcSWAT, and related Conservation practices.

          SWAT - Soil and Water Assessment Tool

            The Soil and Water Assessment Tool (SWAT) is a public domain model jointly developed by USDA Agricultural Research Service (USDA-ARS) and Texas A&M AgriLife Research, part of The Texas A&M University System. SWAT is a small watershed to river basin-scale model to simulate the quality and quantity of surface and ground water and predict the environmental impact of land use, land management practices, and climate change. SWAT is widely used in assessing soil erosion prevention and control, non-point source pollution control and regional management in watersheds.

            NLET - National Load Estimating Tool

              NLET (National Load Estimating Tool) is a web-based tool for estimating pollutant loads in watersheds across the contiguous United States. This tool helps visualize the effects of land use patterns, cultivated crops, and conservation practices through graphical representation.

              RCA Report - Interactive Data Viewer

                This site supports the Soil and Water Resources Conservation Act (RCA) by providing data from a variety of sources, including data on the status and trends of natural resources, conservation efforts (funding and conservation practices applied), and the agricultural sector. Reports can be created at the State, Regional, or National level.

                APEX – Agricultural Policy/Environmental eXtender Model

                  Agricultural Policy/Environmental eXtender (APEX) has components for routing water, sediment, nutrients, and pesticides across complex landscapes and channel systems to the watershed outlet as well as groundwater and reservoir components. A watershed can be subdivided as much as necessary to assure that each subarea is relatively homogeneous in terms of soil, land use, management, and weather. APEX was constructed to evaluate various land management strategies considering sustainability, erosion (wind, sheet, and channel), economics, water supply and quality, soil quality, plant competition, weather, and pests. The routing of water, sediment, nutrient, and pesticide capabilities are some of the most comprehensive available in current landscape-scale models and can be simulated between subareas and channel systems within the model. APEX can perform long-term continuous simulations for modeling the impacts of different nutrient management practices, tillage operations, conservation practices, alternative cropping systems, and other management practices on surface runoff and losses of sediment, nutrients, and other pollutant indicators.

                  Agricultural Conservation Planning Framework (ACPF) Toolbox

                    The Agricultural Conservation Planning Framework (ACPF) Toolbox software includes tools to process the LiDAR-based digital elevation models for hydrologic analysis, which then allows a series of prioritization, riparian classification, and conservation-practice placement tools to be used. These toolsets identify agricultural fields most prone to deliver runoff directly to streams, map and classify riparian zones to inform whole-watershed riparian corridor management, and estimate the extent of tile drainage in the watershed. The software maps out suites of locations appropriate to install each of several types of conservation practices. These practice-placement opportunities are mapped for practices including controlled drainage, grassed waterways, water and sediment control basins, and nutrient removal wetlands. Rather than making any recommendations, ACPF provides an inventory of watershed assessment data and conservation placement opportunities across a watershed, in order to inform local watershed planning.