U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Data and code from: Cultivation and dynamic cropping processes impart land-cover heterogeneity within agroecosystems: a metrics-based case study in the Yazoo-Mississippi Delta (USA)

    This dataset contains data and code from the manuscript: Heintzman, Lucas J., Nancy E. McIntyre, Eddy J. Langendoen, and Quentin D. Read. 2023. Cultivation and dynamic cropping processes impart land-cover heterogeneity within agroecosystems: a metrics-based case study in the Yazoo-Mississippi Delta (USA). *Landscape Ecology*, in revision. **Citation will be updated when MS is accepted.** There are 14 rasters of land use and land cover data for the study region, in .tif format with associated auxiliary files, two shape files with county boundaries and study area extent, a CSV file with summary information derived from the rasters, and a Jupyter notebook containing Python code.

    PhenoCam images from ARSLTARMDCR site, Caroline County, Maryland, USA since 2017

      This data set consists of repeat digital imagery from a tower-mounted digital camera (hereafter, PhenoCam) maintained by the USDA-ARS Hydrology Remote Sensing Laboratory (HRSL) in the Lower Chesapeake Bay (LCB) watershed. HRSL is a member of the PhenoCam network, which has as its mission to serve as a long-term, continental-scale, phenological observatory. Imagery is uploaded to the PhenoCam server every 30 minutes.

      Data from: Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems

        This study was initiated to evaluate, during the following corn (*Zea mays* L.) phase, the effects of interseeded cover crops on soil temperature, soil water balances, evapotranspiration, infiltration, and yield and water use efficiency of corn. The study was conducted at the USDA Beltsville Agricultural Research Center, Beltsville, MD from 2017 through 2020. The cropping systems under study were primarily sequences of corn-soybean (*Glycine max* L.)-wheat (*Triticum aestivum* L.)-double crop soybean all planted with no-tillage management.

        Data from: Conservation Practices Induce Tradeoffs in Soil Function: Observations from the Northern Great Plains

          Near-surface (0-5 cm) measurements of soil physical, chemical, and biological properties over a 3-yr period for contrasting long-term experimental treatments at the USDA-ARS Northern Great Plains Research Laboratory were conducted to quantify soil property responses to crop diversity/intensity, cover crops, and livestock integration under controlled experimental conditions, and land use (dryland cropping, native grassland, untilled pasture) on working farms and ranches, all on a common soil type in southcentral North Dakota, USA.

          Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP): ARDN Products

            ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) and described in detail here: www.tinyurl.com/icasa-mvl”. The original dataset presents evaluations of different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

            Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida: ARDN products

              ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using a common vocabulary termed ICASA. ICASA is a recommended data dictionary by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) described in detail here: www.tinyurl.com/icasa-mvl. Research was conducted at the North Florida Research and Education Center - Suwannee Valley, located near Live Oak, Florida (30°18’22” N, 82°54’00” W). Corn, carrots, peanuts, and rye (cover crop) were grown on Hurricane, Chipley, and Blanton soil complexes that are all over 90% sand. The experimental design utilized a randomized complete block design with split plot that incorporated two fields with eight blocks (treatment replicates) and fifteen plots per block. The main plots contained four irrigation treatments, and the sub-plots contained three different nitrogen rates. The SMS irrigation treatment contained three additional nitrogen treatments. The north field in the study (System 2) was a corn-cover crop-peanut-cover crop rotation, while the south field (System 1) was a corn-carrot-peanut-cover crop rotation. During each growing season, soil moisture was monitored using capacitance type soil moisture sensors, soil nitrogen was measured through bi-weekly soil samples at four depths, and biomass was collected four times with the final sample being collected just prior to harvest.