U.S. flag

An official website of the United States government

RZWQM2

    Root Zone Water Quality Model 2 (RZWQM2) is a whole-system model for studying crop production and environmental quality under current and changing climate conditions. It emphasizes the effects of agricultural management practices on physical, chemical and biological processes. RZWQM2 is a one-dimensional model with a pseudo 2-dimensional drainage flow. Crop simulation options include the generic plant growth model, DSSAT-CSM 4.0 and HERMES SUCROS models. It also can simulate surface energy balance with components from the SHAW model and water erosion from the GLEAMS model. An automated parameter estimation algorithm (PEST) was added to RZWQM2 for objective model calibration and uncertainty analysis.

    Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

      This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

      Environmental Policy Integrated Climate (EPIC) Model

        Environmental Policy Integrated Climate (EPIC) model is a cropping systems model that was developed to estimate soil productivity as affected by erosion. EPIC simulates approximately eighty crops with one crop growth model using unique parameter values for each crop. It can be configured for a wide range of crop rotations and other vegetative systems, tillage systems, and other management strategies. It predicts effects of management decisions on soil, water, nutrient and pesticide movements, and their combined impact on soil loss, water quality, and crop yields for areas with homogeneous soils and management.

        Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190)

          The Sustainable Corn CAP (Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems) was a multi-state transdisciplinary project supported by the USDA National Institute of Food and Agriculture (Award No. 2011-68002-30190). Research experiments were located through the U.S. Corn Belt and examined farm-level adaptation practices for corn-based cropping systems to current and predicted impacts of climate change.

          Agricultural Conservation Planning Framework (ACPF) Database

            Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness can be used to identify alternatives to reduce nutrient discharge from small watersheds. This database was developed to be used in conjunction with the Agricultural Conservation Planning Framework Toolkit. Data comprise soil survey information and land use.