U.S. flag

An official website of the United States government

Growth and Yield Data for the Bushland, Texas, Sunflower Datasets

    This dataset consists of growth and yield data for sunflower (*Helianthus annuus* L.) grown for seed at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2011. In each season, sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The entire datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This dataset focuses on the sunflower growth and yield data.

    Agronomic Calendars for the Bushland, Texas Sunflower Datasets

      This dataset consists of agronomic calendars for two seasons of sunflower (*Helianthus annuus* L.) grown for seed at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2011. Sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The entire datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data.

      Weighing Lysimeter Data for The Bushland, Texas Sunflower Datasets

        This dataset consists of two years of weighing lysimeter data for sunflower grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2011. Sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

        Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Sunflower Datasets

          This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for sunflower grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2022. Sunflower was grown for seed on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field.

          TERRA-REF Season 4 and 6 Sorghum phenotypes and agronomic metadata in BrAPI format: ARDN Products

            ARDN (Agricultural Research Data Network) annotations for "TERRA-REF Season 4 and 6 Sorghum phenotypes and agronomic metadata in BrAPI format". The ARDN project ([https://data.nal.usda.gov/ardn](https://data.nal.usda.gov/ardn)) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL ([https://data.nal.usda.gov/data-dictionary-examples](https://data.nal.usda.gov/data-dictionary-examples)) and described in detail here: [www.tinyurl.com/icasa-mvl](www.tinyurl.com/icasa-mvl) This data represents a small subset of the TERRA-REF release available on Dryad (LeBauer et al 2020), including harvested biomass for each cultivar, plot location, planting date, harvest date, fertilizer application, genotype / accession names and metadata, and additional agronomic management metadata for a population of Sorghum bicolor evaluated over two growing seasons. The data can be accessed through a BrAPI-compliant endpoint at terraref.org/brapi. This dataset is a snapshot of the TERRA-REF BrAPI endpoint contents, representing the minimum data and metadata required to run a crop model.

            TERRA-REF Season 4 and 6 Sorghum phenotypes and agronomic metadata in BrAPI format

              This data represents a small subset of the TERRA-REF release available on Dryad (LeBauer et al 2020), including harvested biomass for each cultivar, plot location, planting date, harvest date, fertilizer application, genotype / accession names and metadata, and additional agronomic management metadata for a population of Sorghum bicolor evaluated over two growing seasons. The data can be accessed through a BrAPI-compliant endpoint at terraref.org/brapi. This dataset is a snapshot of the TERRA-REF BrAPI endpoint contents, representing the minimum data and metadata required to run a crop model.

              Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Winter Wheat Datasets

                This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for winter wheat grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in the 1989-1990, 1991-1992, and 1992-1993 seasons. Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field.

                Weighing Lysimeter Data for The Bushland, Texas Winter Wheat Datasets

                  This dataset consists of six years of weighing lysimeter data for winter wheat grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in the 1989-1990, 1991-1992, and 1992-1993 seasons. Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

                  Germplasm Resources Information Network (GRIN)

                    The Germplasm Resources Information Network (GRIN) is an online portal for information about agricultural genetic resources that are managed by the Agricultural Research Service of USDA, along with U.S. partnering organizations.