ARDN (Agricultural Research Data Network) annotations for "TERRA-REF Season 4 and 6 Sorghum phenotypes and agronomic metadata in BrAPI format". The ARDN project ([https://data.nal.usda.gov/ardn](https://data.nal.usda.gov/ardn)) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL ([https://data.nal.usda.gov/data-dictionary-examples](https://data.nal.usda.gov/data-dictionary-examples)) and described in detail here: [www.tinyurl.com/icasa-mvl](www.tinyurl.com/icasa-mvl)
This data represents a small subset of the TERRA-REF release available on Dryad (LeBauer et al 2020), including harvested biomass for each cultivar, plot location, planting date, harvest date, fertilizer application, genotype / accession names and metadata, and additional agronomic management metadata for a population of Sorghum bicolor evaluated over two growing seasons. The data can be accessed through a BrAPI-compliant endpoint at terraref.org/brapi. This dataset is a snapshot of the TERRA-REF BrAPI endpoint contents, representing the minimum data and metadata required to run a crop model.
TERRA-REF Season 4 and 6 Sorghum phenotypes and agronomic metadata in BrAPI format
This data represents a small subset of the TERRA-REF release available on Dryad (LeBauer et al 2020), including harvested biomass for each cultivar, plot location, planting date, harvest date, fertilizer application, genotype / accession names and metadata, and additional agronomic management metadata for a population of Sorghum bicolor evaluated over two growing seasons. The data can be accessed through a BrAPI-compliant endpoint at terraref.org/brapi. This dataset is a snapshot of the TERRA-REF BrAPI endpoint contents, representing the minimum data and metadata required to run a crop model.
TERRA-REF Season 6 phenotypes and agronomic metadata in BrAPI format
This data represents a small subset of the TERRA-REF release available on Dryad (LeBauer et al 2020), including harvested biomass for each cultivar, plot location, planting date, harvest date, fertilizer application, genotype / accession names and metadata, and additional agronomic management metadata for a population of Sorghum bicolor evaluated over two growing seasons. The data can be accessed through a BrAPI-compliant endpoint at terraref.org/brapi. This dataset is a snapshot of the TERRA-REF BrAPI endpoint contents, representing the minimum data and metadata required to run a crop model.
- 4x json
Walnut Gulch Experimental Watershed, Arizona (Meteorologic)
NAL Geospatial Catalog
The Southwest Watershed Research Center (SWRC) has operated Walnut Gulch Experimental Watershed (WGEW), located in the vicinity of Tombstone, Arizona, for more than 50 years. A 17 year (1990-2006) meteorological and soil hydrology database has been established by the USDA Agricultural Research Service, SWRC.
Comparison of four extractants used in soil phosphorus and potassium testing for two soils in a corn-wheat-soybean rotation in Tennessee receiving various amounts of P and K fertilizer
These soil samples are from field experiments initiated in 2009. There were two separate fertilizer rate trials at each location, one for P and one for K, and each was implemented in a corn-winter wheat-soybean rotation. The soils used in this study are from University of Tennessee (UT)’s Research and Education Center at Milan (35.9, -88.73333) and UT’s Highland Rim Research and Education Center at Springfield (36.466667, -86.816667).
Data From: TERRA-REF, An Open Reference Data Set From High Resolution Genomics, Phenomics, and Imaging Sensors
Record for TERRA-REF open-access reference datasets hosted on Dryad.
Small Watershed Hydrology (WinTR-55)
WinTR-55 is a single-event rainfall-runoff small watershed hydrologic model. The model generates hydrographs from both urban and agricultural areas and at selected points along the stream system. Hydrographs are routed downstream through channels and/or reservoirs. Multiple sub-areas can be modeled within the watershed.
Cligen
Cligen is a stochastic weather generator which produces daily estimates of precipitation, temperature, dewpoint, wind, and solar radiation for a single geographic point, using monthly parameters (means, SD's, skewness, etc.) derived from the historic measurements. Unlike other climate generators, it produces individual storm parameter estimates, including time to peak, peak intensity, and storm duration, which are required to run the WEPP and the WEPS soil erosion models.