U.S. flag

An official website of the United States government

Data from: Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

    Loblolly pine (*Pinus taeda* L.) is one of the most widely planted and commercially important forest tree species in the USA and worldwide, and is an object of intense genomic research. However, whole genome resequencing in loblolly pine is hampered by its large size and complexity and a lack of a good reference. As a valid and more feasible alternative, entire exome sequencing was hence employed to identify the gene-associated single nucleotide polymorphisms (SNPs) and to genotype the sampled trees.

    Data from: Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

      For genome assembly of *C. zofingiensis* strain SAG 211–14, we used a hybrid approach blending short reads (Illumina), long reads (Pacific Biosciences of California), and whole-genome optical mapping (OpGen) (SI Appendix, SI Text and Datasets S1–S19, and refer to SI Appendix, Datasets Key). The combined power of these approaches yielded a high-quality haploid nuclear genome of *C. zofingiensis* of ∼58 Mbp distributed over 19 chromosomes (Fig. 2) in the tradition of model organism projects, as opposed to the fragmentary “gene-space” assemblies typical of modern projects using high-throughput methods and associated software. Approximately 99% of reads from the Illumina genomic libraries were accounted for, and nonplaceholder chromosomal sequence covers ∼94% of the optical map. Because no automated pipeline was found able to achieve the desired quality, methods are described in SI Appendix, SI Text.