U.S. flag

An official website of the United States government

Metadata for: Climate-driven prediction of land water storage anomalies: An outlook for water resources monitoring across the conterminous United States

    These research data are associated with the manuscript entitled “Climate-driven prediction of land water storage anomalies: An outlook for water resources monitoring across the conterminous United States” (https://doi.org/10.1016/j.jhydrol.2020.125053). The study focused on the conterminous United States (CONUS) which extends over a region of contrasting climates with an uneven distribution of freshwater resources. Under climate change, an exacerbation of the contrast between dry and wet regions is expected across the CONUS and could drastically affect local ecosystems, agriculture practices, and communities. Hence, efforts to better understand long-term spatial and temporal patterns of freshwater resources are needed to plan and anticipate responses. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite observations provide estimates of large-scale land water storage changes with an unprecedented accuracy. However, the limited lifetime and observation gaps of the GRACE mission have sparked research interest for GRACE-like data reconstruction. This study developed a predictive modeling approach to quantify monthly land liquid water equivalence thickness anomaly (LWE) using climate variables including total precipitation (PRE), number of wet day (WET), air temperature (TMP), and potential evapotranspiration (PET). The approach builds on the achievements of the GRACE mission by determining LWE footprints using a multivariate regression on principal components model with lag signals. The performance evaluation of the model with a lag signals consideration shows 0.5 ≤ R2 ≤ 0.8 for 41.2% of the CONUS. However, the model’s predictive power is unevenly distributed. The model could be useful for predicting and monitoring freshwater resources anomalies for the locations with high model performances. The processed data used as inputs in the study are here provided including the GIS files of the different maps reported. Data reported in the csv files are 0.5-degree gridded monthly time-series of Land water Equivalence anomalies (USlwe163.csv), Potential evapotranspiration (USpet163.csv), Precipitation (USpre163.csv), above-ground air temperature (UStmp163.csv), and number of wet days (USwet163.csv) for 163 consecutive months over the period 2002 to 2017.

    NRCS Regional Conservation Partnership Program - RCPP Critical Conservation Areas

      Critical Conservation Areas (CCAs) are designated by the Secretary of Agriculture and represent an opportunity for many stakeholders to come together at a regional level to address common natural resource goals while maintaining or improving agricultural productivity. Partners, working closely with producers and communities, define and propose projects that will achieve regional natural resource goals while also meeting complementary local conservation priorities.

      NRCS Regional Conservation Partnership Program - Great Lakes Region

        America’s Great Lakes — Superior, Michigan, Huron, Erie and Ontario — hold 21 percent of the world’s surface fresh water and host habitat for a variety of fish and wildlife species of concern. They provide drinking water for more than 40 million people and economic benefits from fishing and recreation. The Great Lakes Region is also a major agricultural area, with more than 55 million acres of land under production. This dataset includes a printer-friendly CCA map and shapefiles for GIS.

        Data from: Comparative farm-gate life cycle assessment of oilseed feedstocks in the Northern Great plains

          This MS Word document contains the oilseed feedstock farm-gate model inventories, results, and uncertainty analyses for the Northern Great Plains discussed in Moeller et. al 2017. Analysis was conducted using IPCC GHG standardized emissions. Methodology is detailed in the associated publication (doi: 10.1007/s41247-017-0030-3). The supplementary information contains the names of the ecoinvent inventories; oilseed yield, seeding rates, and fertilization rates per USDA crop management zone (CMZ); climate change, freshwater eutrophication, and marine eutrophication percent contributions ReCiPe results per CMZ; Monte Carlo uncertainty results per CMZ; and farm-gate energy balance analysis results per CMZ.