U.S. flag

An official website of the United States government

TPAC Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in West Lafayette, Indiana

    This research project was conducted to assess the influence of cropping system management on non-carbon dioxide (non-CO2) GHG emissions from an eastern cornbelt alfisol. Corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation plots were established, as were plots in continuous management of native grasses or Sorghum/Sudan grass. GHG fluxes were monitored throughout each growing season from 2004 through 2007.

    Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190): ARDN Products

      ARDN (Agricultural Research Data Network) annotations for Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190). These data are a subset of the Sustainable Corn CAP (Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems) data specifically developed for Agricultural Research Data Network with csv and json files for easy ingestion into crop models.

      Data from: Environmental footprints of beef cattle production in the United States

        To quantify important environmental impacts of beef cattle production in the United States, surveys and visits of farms, ranches and feedlots were conducted throughout seven regions (Northeast, Southeast, Midwest, Northern Plains, Southern Plains, Northwest and Southwest). Life cycle environmental impacts of U.S. beef cattle production were determined. Annual carbon emission was 243 ± 26 Tg CO2e (21.3 ± 2.3 kg CO2e/kg carcass weight). Annual fossil energy use was 569 ± 53 PJ (50.0 ± 4.7 MJ/kg carcass weight). Blue water consumption was 23.2 ± 3.5 TL (2034 ± 309 L/kg carcass weight). Reactive nitrogen loss was 1760 ± 136 Gg N (155 ± 12 g N/kg carcass weight).

        Operational Tillage Information System (OpTIS) tillage, residue, and soil health practice dataset

          CTIC has partnered with Applied GeoSolutions and The Nature Conservancy on the development, testing and application of the Operational Tillage Information System (OpTIS), an automated system to map tillage, residue cover, winter cover, and soil health practices using remote sensing data. While OpTIS calculations are performed at the farm-field scale using publicly available data, the privacy of individual producers is fully protected by reporting only spatially-aggregated results at regional and watershed scales. OpTIS-based data are currently available for the years 2005 through 2018 for the US Corn Belt, including all of Illinois, Indiana, and Iowa, as well as parts of: Kansas, Michigan, Minnesota, Missouri, Nebraska, Ohio, Oklahoma, South Dakota, and Wisconsin.

          Data from: Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest

            Continuous tower-based measurements of the ecosystem-atmosphere exchange of CO2 and CH4 are presented, recorded over the period 2012–2018 and reported at a 30-minute time step at a sub-boreal forest in the northeastern United States. Additionally, we describe a five-year (2012–2016) dataset of chamber-based measurements of soil fluxes of CO2, CH4, and N2O (2013–2016 only), conducted each year from May to November. These data can be used for process studies, for biogeochemical and land surface model validation and benchmarking, and for regional-to-global upscaling and budgeting analyses.

            Gas Flux from Band Application

              Gas Flux from Band Application (GF-Band) is an MS Excel spreadsheet tool that calculates the effective gas flux from soil of a multiple-band area to which manure or fertilizer has been applied in bands. One spreadsheet is for circular gas flux chambers and another is for rectangular chambers.

              Data from: Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.

                This feeding trial was designed to investigate two separate questions. The first question is, “What are the effects of substituting two non-fiber carbohydrate (NFC) sources at two rumen-degradable protein (RDP) levels in the diet on apparent total-tract nutrient digestibility, manure production and nitrogen (N) excretion in dairy cows?”. This is relevant because most of the N ingested by dairy cows is excreted, resulting in negative effects on environmental quality. The second question is, “Is phenotypic residual feed intake (pRFI) correlated with feed efficiency, N use efficiency, and metabolic energy losses (via urinary N and enteric CH4) in dairy cows?”. The pRFI is the difference between what an animal is expected to eat, given its level of productivity, and what it actually eats. The goal was to determine whether production of CH4, urinary N or fecal N is a driver of pRFI.

                Product System Model for Beef Production 2011

                  Product system boundaries (cow-calf-finisher, CCF) include all material and energy flows associated with crop production and live cattle operations. Cattle inventory flows include the cow-calf operation and end with market weight finisher cattle and culls resulting from one full year of operation. The total live weight produced in one year is 2914841.44 kg and is comprised of the following animals: Finished cattle: 3724 (581 kg/finisher), Culled cows: 1156 (636 kg/cow), Culled bulls: 58 (908 kg/cow). These data were developed using Integrated Farm System Model and are intended to represent the MARC cattle operation in Nebraska in 2011. The data were a product of a project funded by the National Cattleman's Beef Association.

                  Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

                    This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.