U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

    This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

    Soil Use - Hydric Soils database

      The Hydric Soils section presents the most current information about hydric soils. It updates information that was previously published in *Hydric Soils of the United States* and coordinates it with information that has been published in the *Federal Register*. It also includes the most recent set of field indicators of hydric soils. The database selection criteria are selected soil properties that are documented in Soil Taxonomy and were designed primarily to generate a list of potentially hydric soils from soil survey databases. Only criteria 1, 3, and 4 can be used in the field to determine hydric soils; however, proof of anaerobic conditions must also be obtained for criteria 1, 3, and 4 either through data or best professional judgment (from *Tech Note 1*). The primary purpose of these selection criteria is to generate a list of soil map unit components that are likely to meet the hydric soil definition.

      NAIP Quarter Quad and Photocenter Shapefiles

        The National Agriculture Imagery Program (NAIP) acquires imagery during the agricultural growing seasons in the continental U.S. A primary goal of the NAIP program is to enable availability of digital orthophotography within a year of acquisition.

        Video data of flowers, fruitlets, and fruit in apple trees during the 2017 growing season at USDA-ARS-AFRS

          This record contains videos of apple trees acquired from a ground vehicle throughout the growing season. Research in precision management methods in orchard crops revolve around locating objects of interest, namely flowers, fruitlets, and fruit, autonomously. This dataset is provided so that researchers without access to research plots or mature trees can experiment with the data acquired during the course of an ongoing project on apple flower estimation in images. The trees shown in these videos have a mixture of colors and growth habits. In particular, the four varieties represent one of each of the Lespinasse ideotypes.

          Data from: Data and analyses of woody restoration planting survival and growth as a function of wild ungulate herbivory

            The data and analyses presented include: (1) planting density, survival and growth (two years post restoration) of riparian plantings along an ~11 km stream reach in northeastern Oregon as a function of herbivory treatment (protected/not protected from wild ungulate herbivory), habitat type, and planting species; and (2) abundance and height distributions of naturally occurring deciduous woody species along the restored stream reach two years post restoration.

            Data from: Effects of conifer treatments on soil nutrient availability and plant composition in sagebrush steppe

              Conifer control in sagebrush steppe of the western United States causes various levels of site disturbance influencing vegetation recovery and resource availability. The data set presented in this article include growing season availability of soil micronutrients and levels of total soil carbon, organic matter, and N spanning a six year period following western juniper (*Juniperus occidentalis* spp. *occidentalis*) reduction by mechanical cutting and prescribed fire of western juniper woodlands in southeast Oregon. These data can be useful to further evaluate the impacts of conifer woodland reduction to soil resources in sagebrush steppe plant communities.

              USDA Plant Hardiness Zone Map (PHZM)

                The 2012 USDA Plant Hardiness Zone Map (PHZM) is the standard by which gardeners and growers can determine which plants are most likely to thrive at a location. The map is based on the average annual minimum winter temperature, divided into 10-degree F zones. For the first time, the map is available as an interactive GIS-based map, for which a broadband Internet connection is recommended, and as static images for those with slower Internet access. Users may also simply type in a ZIP Code and find the hardiness zone for that area. No posters of the USDA Plant Hardiness Zone Map have been printed. But state, regional, and national images of the map can be downloaded and printed in a variety of sizes and resolutions.

                VegScape - Vegetation Condition Explorer

                  VegScape delivers interactive vegetation indices so that web users can explore, visualize, query, and disseminate current vegetative cover maps and data without the need for specialized expertise, software, or high end computers. New satellite-based data are loaded on a weekly basis during the growing season. One can compare year-to-year change since the year 2000, compare conditions at a given times to mean, median and ratio vegetative cover, and can overlay a crop mask to help identify crop land versus non-crop land, among many functions. Vegetation indices, such as the NDVI (Normalized Difference Vegetation Index), and mean, median, and ratio comparisons to prior years have proven useful for assessing crop condition and identifying the land area impacted by floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. The National Aeronautics Space Administration's MODIS satellite is used for this project and provides imaging at 250 meter (15 acres) per pixel resolution. Additionally, the data can be directly exported to Google Earth for mashups or delivered to other applications via web services.