Data from: Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.

This feeding trial was designed to investigate two separate questions. The first question is, “What are the effects of substituting two non-fiber carbohydrate (NFC) sources at two rumen-degradable protein (RDP) levels in the diet on apparent total-tract nutrient digestibility, manure production and nitrogen (N) excretion in dairy cows?”. This is relevant because most of the N ingested by dairy cows is excreted, resulting in negative effects on environmental quality. The second question is, “Is phenotypic residual feed intake (pRFI) correlated with feed efficiency, N use efficiency, and metabolic energy losses (via urinary N and enteric CH4) in dairy cows?”. The pRFI is the difference between what an animal is expected to eat, given its level of productivity, and what it actually eats. The goal was to determine whether production of CH4, urinary N or fecal N is a driver of pRFI.

Dairy CAP logo

The Triticeae Toolbox

The Triticeae Toolbox (T3) webportal hosts data generated by the Triticeae Coordinated Agricultural Project (CAP), funded by the National Institute for Food and Agriculture (NIFA) of the United States Department of Agriculture (USDA). T3 contains SNP, phenotypic, and pedigree data from wheat and barley germplasm in the Triticeae CAP integrating rapidly expanding DNA marker and sequence data with traditional phenotypic data.

Ag Data Commons

Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

Dairy CAP logo

Organic Beef Data from Integration of Crops and Livestock Project

As the organic forage-finished beef industry continues to grow, it is important to understand factors that affect meat quality, characteristics of beef that influence human health, and sensory attributes of cooked beef. Research on alternative breeds and forage types that influence meat quality, FA and AA profiles, and sensory attributes in an organic forage-finished production system, as well as comparisons with alternative breeds is lacking. Data release is part of data management plan with USDA-NIFA funding. Data is from organic dairy beef steers collected at the West Central Research and Outreach Center, Morris, MN.

photo of cows

Research, Education, and Economics Information System (REEIS)

The Research, Education, and Economics Information System (REEIS) is a source of information on the research, education and extension programs, projects and activities of the U. S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), the USDA Forest Service, the USDA National Agricultural Statistics Service, the U. S. Patent and Trademark Office, U. S. Census Bureau, and the U. S. National Science Foundation. The system enables users to measure the impact and effectiveness of research, extension and education programs based on data related to agricultural research; forestry research; students, faculty and degrees related to agriculture; USDA partner institution snapshots; Food and nutrition research; 4-H programs; and agricultural snapshots of each state. Internet links to related agencies, institutions, and data bases are also included.

Ag Data Commons

UAS User Log

The UAS User Log is a server-based, digital logbook that is accessible through any web browser on internet-connected devices.​ It is an outcome of multi-state teams working together to develop a common protocol for unmanned aircraft systems (UAS, or drones) operation for purposes such as research/production, spray application, and any other activity of interest.

Maps and Multimedia

Data from: Underestimation of N2O emissions in a comparison of the DayCent, DNDC, and EPIC 1 models

Process-based models are increasingly used to study mass and energy fluxes from agro-ecosystems, including nitrous oxide (N2O) emissions from agricultural fields. This data set is the output of three process-based models – DayCent, DNDC, and EPIC – which were used to simulate fluxes of N2O from dairy farm soils. The individual models' output and the ensemble mean output were evaluated against field observations from two agricultural research stations in Arlington, WI and Marshfield, WI. These sites utilize cropping systems and nitrogen fertilizer management strategies common to Midwest dairy farms.

Dairy CAP logo