U.S. flag

An official website of the United States government

Alfalfa flux footprint experiment 2021

    Four eddy-covariance (EC) sensors were deployed at two heights upwind and within alfalfa plot trials at San Joaquin Valley Ag Science Center. The purpose of the experiment was to evaluate the robustness of flux footprint models under different atmospheric stability conditions. At each of the two locations, an EC sensor was mounted at an unconventionally low height (~1 meter) and a second at a more typical height (~2.5 m). Supplementary sensors were co-located to measure net radiation, soil heat flux, and other parameters necessary to evaluate closure of the surface energy budget.

    Weighing Lysimeter Data for The Bushland, Texas, Soybean Datasets

      This dataset consists of five years of weighing lysimeter data for soybean [Glycine max (L.) Merr.] grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1995, 2003, 2004, 2010 and 2019. In 1995, 2003, 2004, and 2010, soybean was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. In 2019, soybean was grown on four large, precision weighing lysimeters, each in the center of a 4.4-ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

      Weighing Lysimeter Data for The Bushland, Texas Sunflower Datasets

        This dataset consists of two years of weighing lysimeter data for sunflower grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2011. Sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

        Weighing Lysimeter Data for The Bushland, Texas Winter Wheat Datasets

          This dataset consists of six years of weighing lysimeter data for winter wheat grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in the 1989-1990, 1991-1992, and 1992-1993 seasons. Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

          Weighing Lysimeter Data for The Bushland, Texas Alfalfa Datasets

            This dataset consists of four years of weighing lysimeter data for alfalfa grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1996 through 1999. Alfalfa was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.

            Weighing Lysimeter Data for The Bushland, Texas Maize for Grain Datasets

              This dataset consists of six years of weighing lysimeter data for six seasons of maize grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) for 1989, 1990, 1994, 2013, 2016, and 2018. Maize was grown on four large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties where always sensed in any one year.

              Southern Plains - Micronet

              NAL Geospatial Catalog
                Temporal (5 minute or daily) data from the Little Washita and Ft. Cobb watersheds. Includes precipitation and net radiation (discontinued) along with soil temperature and volumetric water content at 3 depths, 5, 25, and 45 centimeters.

                SGP97 GCIP/NESOB Surface: Sensible, Latent and Ground Heat Flux Composite

                  This Sensible, Latent and Ground Heat Flux composite was formed from three data sources: the ARM Southern Great Plains (SGP) Clouds and Radiation Testbed (CART) Energy Balance/Bowen Ratio (EBBR) sites, the National Oceanic and Atmospheric Administration (NOAA)/Atmospheric Turbulence and Diffusion Division (ATDD) Little Washita Watershed site, and the ARM SGP Eddy Correlation (ECOR) sites. Data from 14 ARM/EBBR stations, 1 NOAA/ATDD station, and 8 ARM/ECOR stations were merged to form this composite.

                  SGP97 GCIP/NESOB Surface: Net Radiation and PAR Composite

                    This composite was developed by the merging of the computed 30-minute averaged values of Net Radiation as derived by University Corporation for Atmospheric Research/Joint Office for Science Support (UCAR/JOSS) from the 20-second values provided by ARM for its SIROS and SIRS stations, and the 30-minute averaged values of Incoming/Outgoing PAR and Net Radiation as provided by NOAA/ATDD for its Little Washita station. UCAR/JOSS computed standard deviations for the averaged data when at least 15 observations were available within the 30-minute averaging interval.