U.S. flag

An official website of the United States government

Southeast Purdue Agricultural Center (SEPAC) drainage research data, 1984-2020

    This dataset contains research data obtained during a long-term subsurface drainage research project conducted at the Southeast Purdue Agricultural Center in Jennings County, Indiana, from 1984 to 2020. The original goals of the project were to evaluate the effects of different subsurface drain spacings (drainage intensities) on drain flow and corn growth and yield. Additional objectives were added over the years, especially related to movement of agricultural chemicals (nitrate-N, other nutrients, and pesticides) through the soil into the drainage waters.

    Transforming Drainage Research Data (USDA-NIFA Award No. 2015-68007-23193)

      This dataset contains research data compiled by the “Managing Water for Increased Resiliency of Drained Agricultural Landscapes” project a.k.a. Transforming Drainage (https://transformingdrainage.org). These data began in 1996 and include plot- and field-level measurements for 39 experiments across the Midwest and North Carolina. Practices studied include controlled drainage, drainage water recycling, and saturated buffers. In total, 219 variables are reported and span 207 site-years for tile drainage, 154 for nitrate-N load, 181 for water quality, 92 for water table, and 201 for crop yield.

      Data from: Soil carbon and nitrogen data during eight years of cover crop and compost treatments in organic vegetable production

        This article includes the raw data, descriptive data (means) and inferential statistics (95% confidence intervals) on the effects of compost and cover cropping over an 8 year period in the Salinas Organic Cropping Systems (SOCS) experiment including: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years.

        Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

          This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.