U.S. flag

An official website of the United States government

Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP): ARDN Products

    ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) and described in detail here: www.tinyurl.com/icasa-mvl”. The original dataset presents evaluations of different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

    Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida: ARDN products

      ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using a common vocabulary termed ICASA. ICASA is a recommended data dictionary by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) described in detail here: www.tinyurl.com/icasa-mvl. Research was conducted at the North Florida Research and Education Center - Suwannee Valley, located near Live Oak, Florida (30°18’22” N, 82°54’00” W). Corn, carrots, peanuts, and rye (cover crop) were grown on Hurricane, Chipley, and Blanton soil complexes that are all over 90% sand. The experimental design utilized a randomized complete block design with split plot that incorporated two fields with eight blocks (treatment replicates) and fifteen plots per block. The main plots contained four irrigation treatments, and the sub-plots contained three different nitrogen rates. The SMS irrigation treatment contained three additional nitrogen treatments. The north field in the study (System 2) was a corn-cover crop-peanut-cover crop rotation, while the south field (System 1) was a corn-carrot-peanut-cover crop rotation. During each growing season, soil moisture was monitored using capacitance type soil moisture sensors, soil nitrogen was measured through bi-weekly soil samples at four depths, and biomass was collected four times with the final sample being collected just prior to harvest.

      Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)

        Data are presented to evaluate different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

        The Bronson Files, Dataset 10, Field 113, 2018 Cotton

          Dr. Kevin Bronson provides a dataset representing the third of three consecutive years of cotton and nitrogen management experimentation in Field 113 of the Maricopa Agricultural Center, Arizona USA. Included is an intermediate analysis mega-table of correlated and calculated parameters, laboratory analysis results generated during the experimentation, plus high-resolution plot level intermediate data analysis tables of SAS process output, as well as the complete raw data sensor recorded logger outputs. Note that the second and third year of F113 cotton experimentation includes a large utilization of depleted nitrogen-15 isotope tracing to support evaluation of nitrogen use and uptake.

          A Survey to Evaluate the Current Status of Land Grant University and State Department of Agriculture Soil Fertility Recommendations and Analytical Methods

            Results of a survey to collect contemporary information from our land-grant university colleagues working in soil fertility. The goals of the survey were to gain a better understanding of the current status of soil testing across the U.S. to inform future collaborative efforts among states and regions, and to identify where opportunities exist to harmonize recommendation guidelines. The objectives were to collect information about state soil test recommendations, fertilization philosophy, analytical methods, and the provenance of correlation and calibration data that support soil-test-based recommendations.

            The Bronson Files, Dataset 9, Field 113, 2017 Cotton

              Dr. Kevin Bronson provides a dataset representing the second of three consecutive years of cotton and nitrogen management experimentation in Field 113. Included is an intermediate analysis mega-table of correlated and calculated parameters, laboratory analysis results generated during the experimentation, plus high-resolution plot level intermediate data analysis tables of SAS process output, as well as the complete raw data sensor recorded logger outputs. Note that the second and third year of F113 cotton experimentation includes a large utilization of depleted nitrogen-15 isotope tracing to support evaluation of nitrogen use and uptake.

              Data from: Plant Tissue Characteristics of Miscanthus x giganteus v2

                As part of a study identifying relationships between environmental variables and insect distributions within a bioenergy crop, giant miscanthus (Miscanthus x giganteus) samples were collected in October 2016 at 33 locations within a field in southeast Georgia, USA. This dataset describes the chemical composition of giant miscanthus leaves and stems including the total carbon (TC) and nitrogen (TN) content, total macro- and micronutrients.