U.S. flag

An official website of the United States government

Management Zone Analyst Version 1.0 Software

    Management Zone Analyst (MZA) is a decision-aid for creating within-field management zones based on quantitative field information. It mathematically breaks up a field into natural clusters or zones based on the classification parameters and number of zones you specify.

    NLEAP GIS 5.0

      NLEAP GIS 5.0 can help users identify hot spots across the landscape and identify management practices that can increase nitrogen use efficiency. A Nitrogen Trading Tool (NTT) analysis can be conducted to determine the potential benefits of implementing best management practices and the quantity of nitrogen savings that could potentially be traded in future air or water quality markets.

      Data from: Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.

        This feeding trial was designed to investigate two separate questions. The first question is, “What are the effects of substituting two non-fiber carbohydrate (NFC) sources at two rumen-degradable protein (RDP) levels in the diet on apparent total-tract nutrient digestibility, manure production and nitrogen (N) excretion in dairy cows?”. This is relevant because most of the N ingested by dairy cows is excreted, resulting in negative effects on environmental quality. The second question is, “Is phenotypic residual feed intake (pRFI) correlated with feed efficiency, N use efficiency, and metabolic energy losses (via urinary N and enteric CH4) in dairy cows?”. The pRFI is the difference between what an animal is expected to eat, given its level of productivity, and what it actually eats. The goal was to determine whether production of CH4, urinary N or fecal N is a driver of pRFI.

        NUOnet (Nutrient Use and Outcome Network) database

          The Nutrient Uptake and Outcomes (NUOnet) database will be able to help establish baselines on nutrient use efficiencies; processes contributing to nutrient losses; and processes contributing to optimal crop yield, nutritional and organoleptic quality. This national database could be used to calculate many different environmental indicators from a comprehensive understanding of nutrient stocks and flows.

          REAP (Resilient Economic Agricultural Practices)

            REAP (Resilient Economic Agricultural Practices), formerly known as the Renewable Energy Assessment Project, was initially organized to quantitatively assess the impacts of crop residue (e.g., corn stover) on soil properties. The project's current vision is to revitalize soil health and resiliency, thereby enabling soil resources to meet expanding societal demands while safe-guarding planetary health. Goals include 1) Identifying physical, chemical, or biological parameters and index tools that quantify management effects on carbon sequestration and soil health; 2) Conducting coordinated, quantitative multi-location comparisons of business as usual vs. improved management practices designed to enhance nutrient use efficiency and soil health; 3) Identification of critical indicators and index tools to quantify site-specific soil health and water quality effects; 4) Developing, expanding, and coordinating among ARS teams providing data and databases needed to sustainably supply cellulosic-based bioenergy feedstock and other national natural resource and agricultural challenges.