U.S. flag

An official website of the United States government

LTAR Upper Mississippi River Basin - Morris - Swan Lake Research Farm Phenocam

NAL Geospatial Catalog
    The PhenoCam network is collecting color and near infrared images year-round using cameras in fixed positions on agricultural lands including a site located on the Swan Lake Research Farm. The network effort was initiated in 2015 at this long-term, plot-scale research site. The camera at the research farm on focused a plot-scale, replicated research study that was established in 1997 to assess the long-term impacts of various tillage management options on soil organic carbon

    Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota

      Tillage is decreasing globally due to recognized benefits of fuel savings and improved soil health in the absence of disturbance. However, a perceived inability to control weeds effectively and economically hinders no-till adoption in organic production systems in the Upper Midwest, USA. A strip-tillage (ST) strategy was explored as an intermediate approach to reducing fuel use and soil disturbance, and still controlling weeds. An 8-year comparison was made between two tillage approaches, one primarily using ST the other using a combination of conventional plow, disk and chisel tillage [conventional tillage (CT)].

      Alternative Biomass Production Study for Resilient Economic Agricultural Practices in Morris, Minnesota

        The Tillage Study was established in 1997 to assess the effect of a variety of tillage intensities on soil C. The initial eight treatments included no-tillage, moldboard + disk tillage, chisel tillage, and fall and spring residue management, with or without strip-tillage and strip-tillage + subsoiling (Archer and Reicosky, 2009). In 2004, treatments were reduced to no-tillage, moldboard tillage, and fall and spring residue management without strip-tillage, but all had an early or late planting date. The last comprehensive set of soil samples were collected in 2006.

        Irrigation Residue Removal Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Lincoln, Nebraska

          USDA-ARS REAP Study (Ithaca, NE) - NEMEIRR Sustainable intensification of high-yielding production systems may help meet increasing demands for food, fuel, and fiber worldwide. Specifically, corn stover is being removed by producers for livestock purposes, and stover is also targeted as a primary 2nd generation biofuel feedstock. The NEMEIRR experimental objectives are to quantify how stover removal (no removal, moderate removal, high removal) and tillage management (no-till, disk) affect crop yields, soil organic carbon, soil greenhouse gas emissions, and other soil responses (microbial community structure, function; soil health). This experiment is conducted in a fully irrigated continuous corn system in the western Corn Belt, and soil and plant measurements have been taken since study establishment in 2001.

          P-TRAP Phosphorus Transport Reduction App

            The P-TRAP software allows a user to design different types of phosphorus removal structures based on site conditions, phosphorus absorbing material characteristics and structure parameters. The P-TRAP software allows users to explore different designs to meet performance goals for P removal amounts and material lifetime. A database of P absorbing material characteristics is included based on previous laboratory experiments.

            Data from: Environmental footprints of beef cattle production in the United States

              To quantify important environmental impacts of beef cattle production in the United States, surveys and visits of farms, ranches and feedlots were conducted throughout seven regions (Northeast, Southeast, Midwest, Northern Plains, Southern Plains, Northwest and Southwest). Life cycle environmental impacts of U.S. beef cattle production were determined. Annual carbon emission was 243 ± 26 Tg CO2e (21.3 ± 2.3 kg CO2e/kg carcass weight). Annual fossil energy use was 569 ± 53 PJ (50.0 ± 4.7 MJ/kg carcass weight). Blue water consumption was 23.2 ± 3.5 TL (2034 ± 309 L/kg carcass weight). Reactive nitrogen loss was 1760 ± 136 Gg N (155 ± 12 g N/kg carcass weight).


                GPFARM (Great Plains Framework for Agricultural Resource Management) is a simulation model computer application. It incorporates state of the art knowledge in agronomy, animal science, economics, weed science and risk management into a user-friendly, decision support tool. Producers, agricultural consultants, action agencies and scientists can utilize GPFARM to test alternative management strategies that may in turn lead to sustainable agriculture, a reduction in pollution, or maximum economic return. GPFARM Express contains default projects to allow users to quickly set up their operations.