U.S. flag

An official website of the United States government

Nearest Neighbor Soil Water Retention Estimator

    The k-nearest neighbor (k-NN) technique is a non-parametric technique that can be used to make predictions of discrete (class-type) as well as continuous variables. The k-NN technique and many of its derivatives belong to the group of .lazy learning algorithms.. It is lazy, as it passively stores the development data set until the time of application; all calculations are performed only when estimations need to be generated.

    Sorption Isotherm Spreadsheet

      Spreadsheet from the paper entitled: On the Use of Linearized Langmuir Equations by C.H. Bolster and G.M. Hornberger, Soil Science Society of America Journal, 2007, 71(6): 1796-1806.


        Statistical software package for estimating field scale spatial salinity patterns from electromagnetic induction signal data (for Windows XP)

        Stream Temperature Modeling and Monitoring: Air Temperature Based Thermal Stream Habitat Model

          The Air Temperature Based Thermal Stream Habitat Model was originally developed from weather station information across the Columbia River basin in the Pacific Northwest. Multiple regression was used to predict mean annual air temperatures from elevation, latitude, and longitude with good success R^2 ~ 0.89). The model was developed as an alternative to PRISM data interpolations based on spline surface smoothing and should more accurately represent thermal conditions in stream valleys.

          Stream Temperature Modeling and Monitoring: Multiple Regression Stream Temperature Model

            This simple Stream Temperature Modeling and Monitoring approach uses thermograph data and geomorphic predictor variables from GIS software and digital elevation models (DEM). Multiple regression models are used to predict stream temperature metrics throughout a stream network with moderate accuracy (R^2 ~ 0.65). The models can provide basic descriptions of spatial patterns in stream temperatures, suitable habitat distributions for aquatic species, or be used to assess temporal trends related to climate or management activities if multiple years of temperature data are available.

            Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

              This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

              Data from: Data and analyses of woody restoration planting survival and growth as a function of wild ungulate herbivory

                The data and analyses presented include: (1) planting density, survival and growth (two years post restoration) of riparian plantings along an ~11 km stream reach in northeastern Oregon as a function of herbivory treatment (protected/not protected from wild ungulate herbivory), habitat type, and planting species; and (2) abundance and height distributions of naturally occurring deciduous woody species along the restored stream reach two years post restoration.