U.S. flag

An official website of the United States government

ROSETTA

    Estimates water retention, saturated and unsaturated hydraulic conductivity from basic soil data (requires 32-bit Windows).

    HYDRUS-1D

      HYDRUS-1D is a Microsoft Windows-based modeling environment for analysis of water flow and solute transport in variably saturated porous media. The software package includes the one-dimensional finite element model HYDRUS (version 7.0) for simulating the movement of water, heat, and multiple solutes in variably saturated media. The model is supported by an interactive graphics-based interface for data-preprocessing, discretization of the soil profile, and graphic presentation of the results.

      Data from: Gas emissions from dairy barnyards

        To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems.

        Data from: A field-scale sensor network data set for monitoring and modeling the spatial and temporal variation of soil moisture in a dryland agricultural field

          Automated in situ soil sensor network - the data set includes hourly and daily measurements of volumetric water content, soil temperature, and bulk electrical conductivity, collected at 42 monitoring locations and 5 depths (30, 60, 90, 120, and 150 cm) across Cook Agronomy Farm. Data collection was initiated in April 2007 and is ongoing.