U.S. flag

An official website of the United States government

Modified Langmuir Equation Spreadsheet

    Spreadsheet from the paper entitled: Revisiting a Statistical Shortcoming when Fitting the Langmuir Model to Sorption Data by C.H. Bolster, Journal of Environmental Quality, 2008, 37:1986-1992. Spreadsheet has been modified to make a correction to the calculation of E for weighted data. (3/18/2010).


      Statistical software package for estimating field scale spatial salinity patterns from electromagnetic induction signal data (for Windows XP)

      Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

        This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

        Data from: Soil organic carbon and isotope composition response to topography and erosion in Iowa

          The dataset includes topographic information, soil properties, and 137Cs levels collected from a 15 ha cropland under soybean/maize (C3/C4) rotation in June 2002. The cropland is located in the central-western part of the Walnut Creek watershed, Story County, Iowa. 128 sampling locations were collected and three soil samples were obtained using a 3.2 cm-diameter push probe from the 0 to 30 cm soil layer within a 1 m × 1 m quadrat at each sampling location. Deeper soil samples were collected from 30 to 50 cm layers in locations where sediment deposition was observed. The three samples from each sampling location were mixed and analyzed to determine soil properties, SOC content and its carbon (C) isotope composition (C12 to C13 ratio), and 137Cs levels. For landscape topography of each sampling location, topographic metrics were derived from a digital elevation mode using LiDAR (Light Detection and Ranging) data. These data are useful in investigating the fate of eroded SOC in croplands and its responses to landscape topography.

          Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190)

            The Sustainable Corn CAP (Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems) was a multi-state transdisciplinary project supported by the USDA National Institute of Food and Agriculture (Award No. 2011-68002-30190). Research experiments were located through the U.S. Corn Belt and examined farm-level adaptation practices for corn-based cropping systems to current and predicted impacts of climate change.