This study was initiated to evaluate, during the following corn (*Zea mays* L.) phase, the effects of interseeded cover crops on soil temperature, soil water balances, evapotranspiration, infiltration, and yield and water use efficiency of corn. The study was conducted at the USDA Beltsville Agricultural Research Center, Beltsville, MD from 2017 through 2020. The cropping systems under study were primarily sequences of corn-soybean (*Glycine max* L.)-wheat (*Triticum aestivum* L.)-double crop soybean all planted with no-tillage management.
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Soybean Datasets
This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for soybean [*Glycine max* (L.) Merr.] grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1995, 2003, 2004, 2010 and 2019 on large, precision weighing lysimeters, each in the center of a 4.44 ha square field.
Weighing Lysimeter Data for The Bushland, Texas, Soybean Datasets
This dataset consists of five years of weighing lysimeter data for soybean [Glycine max (L.) Merr.] grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1995, 2003, 2004, 2010 and 2019. In 1995, 2003, 2004, and 2010, soybean was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. In 2019, soybean was grown on four large, precision weighing lysimeters, each in the center of a 4.4-ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.
Weighing Lysimeter Data for The Bushland, Texas Sunflower Datasets
This dataset consists of two years of weighing lysimeter data for sunflower grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2011. Sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.
- 2x xlsx
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Sunflower Datasets
This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for sunflower grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 2009 and 2022. Sunflower was grown for seed on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field.
- 2x xlsx
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Winter Wheat Datasets
This dataset consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. Data are for winter wheat grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in the 1989-1990, 1991-1992, and 1992-1993 seasons. Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field.
- 6x xlsx
Weighing Lysimeter Data for The Bushland, Texas Winter Wheat Datasets
This dataset consists of six years of weighing lysimeter data for winter wheat grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in the 1989-1990, 1991-1992, and 1992-1993 seasons. Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.
- 6x xlsx
Soil Water Content Data for The Bushland, Texas, Winter Wheat Experiments
This dataset contains soil water content data developed from neutron probe readings taken in access tubes in each of the four large, precision weighing lysimeters and in the fields surrounding each lysimeter at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) beginning in 1989. Readings were taken periodically with a field-calibrated neutron probe at depths from 10 cm to 230 cm (maximum of 190 cm depth in the lysimeters) in 20-cm depth increments. Periods between readings were typically one to two weeks, sometimes longer according to experimental design and need for data. Field calibrations in the Pullman soil series were done every few years. Calibrations typically produced a regression equation with RMSE <= 0.01 m3 m-3. Data were used to guide irrigation scheduling to achieve full or deficit irrigation as required by the experimental design.
- 3x xlsx
Soil Water Content Data for The Bushland, Texas Alfalfa Experiments
This dataset contains soil water content data developed from neutron probe readings taken in access tubes in each of the four large, precision weighing lysimeters and in the fields surrounding each lysimeter at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) beginning in 1989. Readings were taken periodically with a field-calibrated neutron probe at depths from 10 cm to 230 cm (maximum of 190 cm depth in the lysimeters) in 20-cm depth increments. Periods between readings were typically one to two weeks, sometimes longer according to experimental design and need for data. Field calibrations in the Pullman soil series were done every few years. Calibrations typically produced a regression equation with RMSE <= 0.01 m3 m-3. Data were used to guide irrigation scheduling to achieve full or deficit irrigation as required by the experimental design.
- 5x xlsx
Weighing Lysimeter Data for The Bushland, Texas Alfalfa Datasets
This dataset consists of four years of weighing lysimeter data for alfalfa grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) in 1996 through 1999. Alfalfa was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The datasets for individual season years consist of soil water content, weather, crop growth and yield, agronomic calendar, water balance (evapotranspiration, precipitation, dew/frost, irrigation), and lysimeter energy and water balance data. This particular dataset contains lysimeter soil water storage and drainage data, and data from in-soil and above-soil sensors. Properties sensed included wind speed, air temperature and relative humidity, components of the radiation balance (e.g., net radiation, incoming and reflected shortwave, photosynthetically active radiation (PAR), incoming and reflected longwave, thermal infrared emitted by the plant/soil surface), soil heat flux, soil temperature, and soil volumetric water content at certain depths. Not all properties were always sensed in any one year.
- 4x xlsx