The STARFM algorithm uses comparisons of one or more pairs of observed Landsat/MODIS maps, collected on the same day, to predict maps at Landsat-scale on other MODIS observation dates. STARFM was initially developed at the NASA Goddard Space Flight Center by Dr. Feng Gao. This version (v1.2) has been greatly improved in computing efficiency (e.g. one run for multiple dates and parallel computing) for large-area processing (Gao et al., 2015). Additional improvements (e.g. Landsat and MODIS images co-registration, daily MODIS nadir BRDF-adjusted reflectance) in the operational data fusion system (Wang et al., 2014) are beyond the STARFM program and are not included in this package. Improvement and continuous maintenance are being undertaken in the USDA-ARS Hydrology and Remote Sensing Laboratory (HRSL), Beltsville, MD by Dr. Feng Gao.

Agroecosystems & Environment


SPUR2 DOS ver. 2.2 is a general grassland ecosystem simulation model designed to determine beef cattle performance and production by simultaneously simulating production of up to 15 plant species on 36 heterogeneous grassland sites. SPUR2 simulates grassland hydrology, nitrogen cycling, and soil organic matter on grazed ecosystems as well as rangeland production under different climatic regimes, environmental conditions, and management alternatives.

Agroecosystems & Environment

KINEROS - The kinematic runoff and erosion model

The kinematic runoff and erosion model KINEROS is an event oriented, physically based model describing the processes of interception, infiltration, surface runoff and erosion from small agricultural and urban watersheds. The watershed is represented by a cascade of planes and channels; the partial differential equations describing overland flow, channel flow, erosion and sediment transport are solved by finite difference techniques. The spatial variation of rainfall, infiltration, runoff, and erosion parameters can be accomodated. KINEROS may be used to determine the effects of various artificial features such as urban developments, small detention reservoirs, or lined channels on flood hydrographs and sediment yield.

Agroecosystems & Environment

Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice

This study describes how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. A sample monitoring dataset is used to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA.

Agroecosystems & Environment

Rapid Carbon Assessment (RaCA)

The Rapid Carbon Assessment (RaCA) was initiated by the USDA-NRCS Soil Science Division in 2010 with the following objectives:

  • To develop statistically reliable quantitative estimates of amounts and distribution of carbon stocks for U.S. soils under various land covers and to the extent possible, differing agricultural management.
  • To provide data to support model simulations of soil carbon change related to land use change, agricultural management, conservation practices, and climate change.
  • To provide a scientifically and statistically defensible inventory of soil carbon stocks for the U.S.
Maps and Multimedia

Wildland Urban Interface Project Maps

For each map listed, we provided an Adobe Acrobat file (PDF), a compressed Postscript file (ZIP) for plotter output, and metadata files in both HTML and text formats. Short descriptions of each map are available in the abstract portion of the metadata files.

Maps and Multimedia