Data from: Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments.

Genomics and Genetics

Data from: The Majority of Genotypes of the Virulence Gene inlA Are Intact among Natural Watershed Isolates of Listeria monocytogenes from the Central California Coast

Internalin A is an essential virulence gene involved in the uptake of the foodborne pathogen Listeria monocytogenes into host cells. It is intact in clinical strains and often truncated due to Premature Stop Codons (PMSCs) in isolates from processed foods and processing facilities. Less information is known about environmental isolates. We sequenced the inlA alleles and did Multi Locus Variable Number Tandem Repeat Analysis (MLVA) on 112 L. monocytogenes isolates from a 3-year period from naturally contaminated watersheds near a leafy green growing area in Central California.

Genomics and Genetics

Data from: Condition‐dependent co‐regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum

The capability of the ascomycete Neofusicoccum parvum to colonize woody tissue, combined with the secretion of phytotoxic compounds, is thought to underlie its pathogenicity and virulence. The repertoire of virulence factors and their transcriptional dynamics as the fungus feeds on different substrates and colonizes the woody stem are described and a highly contiguous genome is assembled and annotated using single‐molecule real‐time DNA sequencing.

Genomics and Genetics