Data from: Quality controlled research weather data – USDA-ARS, Bushland, Texas

The dataset contains 15-minute mean weather data from the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) for all days in 2016. The data are from sensors deployed at standard heights over grass that is irrigated and mowed during the growing season to reference evapotranspiration standards.

Agroecosystems & Environment

pySnobal

Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

Agroecosystems & Environment

Automated Water Supply Model (AWSM)

Automated Water Supply Model (AWSM) was developed at the USDA Agricultural Research Service in Boise, ID, to streamline the workflow used to forecast the water supply of multiple water basins.

Spatial Modeling for Resources Framework (SMRF)

Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

Agroecosystems & Environment

Compilation of climate data from heterogeneous networks across the Hawaiian Islands

This paper provides: (1) a summary of the available climate data in Hawai‘i including a detailed description of the various meteorological observation networks and data accessibility, and (2) a quality-controlled meteorological dataset across the Hawaiian Islands for the 25-year period 1990-2014. The dataset draws on observations from 471 climate stations and includes rainfall, maximum and minimum surface air temperature, relative humidity, wind speed, downward shortwave and longwave radiation data.

Agroecosystems & Environment

Data from: Underestimation of N2O emissions in a comparison of the DayCent, DNDC, and EPIC 1 models

Process-based models are increasingly used to study mass and energy fluxes from agro-ecosystems, including nitrous oxide (N2O) emissions from agricultural fields. This data set is the output of three process-based models – DayCent, DNDC, and EPIC – which were used to simulate fluxes of N2O from dairy farm soils. The individual models' output and the ensemble mean output were evaluated against field observations from two agricultural research stations in Arlington, WI and Marshfield, WI. These sites utilize cropping systems and nitrogen fertilizer management strategies common to Midwest dairy farms.

Dairy CAP logo

Data from: Eleven years of mountain weather, snow, soil moisture and stream flow data from the rain-snow transition zone - the Johnston Draw catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA. v1.1

Detailed hydrometeorological data from the mountain rain-to-snow transition zone are present for water years 2004 through 2014. The Johnston Draw watershed (1.8 km2), ranging from 1497 – 1869 m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The dataset includes continuous hourly hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity and snow depth from 11 sites in the watershed. Hourly measurements of solar radiation, precipitation, wind speed and direction, and soil moisture and temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating models in interdisciplinary studies and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone.

Agroecosystems & Environment