Data from: Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics

Non-targeted metabolomics, combined with transcriptomics via a NimbleGen array platform, are used to study how gene expression and metabolite profiles can be linked to generate a more detailed mechanistic appreciation of the cellular response to both desiccation and rehydration in the C4 resurrection grass, Sporobolus stapfianus Gandoger, as a member of a group of important forage grasses.

Agroecosystems & Environment

USDA/ARS Kimberly, ID - Furrow Infiltration and Erosion Data, 1998 to 2016

The data are derived from the field monitoring of irrigated furrows from 1998 to 2016 at the research farm of the USDA/ARS-Northwest Irrigation and Water Research Laboratory in Kimberly, Idaho, USA (south-central Idaho). For each monitored furrow, irrigation inflow rates, outflow rates, and sediment concentrations were recorded periodically during the irrigation. A gated pipe conveyed irrigation water across the plots at the head, or inflow-end, of the furrows and adjustable spigots supplied water to each irrigated furrow.

Agroecosystems & Environment

pySnobal

Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

Agroecosystems & Environment

Automated Water Supply Model (AWSM)

Automated Water Supply Model (AWSM) was developed at the USDA Agricultural Research Service in Boise, ID, to streamline the workflow used to forecast the water supply of multiple water basins.

Spatial Modeling for Resources Framework (SMRF)

Spatial Modeling for Resources Framework (SMRF) was developed at the USDA Agricultural Research Service (ARS) in Boise, ID, and was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed.

Agroecosystems & Environment

Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

Dairy CAP logo