U.S. flag

An official website of the United States government

Bushland ET Calculator

    The Bushland Reference ET calculator was developed at the USDA-ARS Conservation and Production Research Laboratory, Bushland, Texas. Although it was designed and developed for use mainly by producers and crop consultants to manage irrigation scheduling, it can also be used in educational training, research, and other practical application. It uses the ASCE Standardized Reference Evapotranspiration (ET) Equation for calculating grass and alfalfa reference ET at hourly and daily time steps. This program uses the more complex equation for estimating clear-sky solar radiation provided in Appendix D of the ASCE-EWRI ET Manual. Users have the option of using single set or time series weather data to calculate reference ET. Daily reference ET can be calculated either by summing the hourly ET values for a given day or by using averages of the climatic data.

    Data from: Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.)

      Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS). The plants were genotyped using genotyping-by-sequencing (GBS). A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW), plant height (PH), leaf chlorophyll content (LCC), and stomatal conductance (SC). For each trait, a stress susceptibility index (SSI) was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (*Medicago truncatula*). Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

      Data from: Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping

        Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa.

        Plant Variety Protection Office - Scanned Certificates

          This dataset provides the scans of issued certificates for a variety of plants. If you know the certificate number or applicant name simply enter the information in the search box. For certificates issued between 1970 and 1999, add two zeroes in front of the 7-digit number. Alternatively, you can search by selecting a crop from the list.

          Manure application methods for alfalfa-grass

            The MAMA experiment (Manure Application Methods for Alfalfa-Grass), from the USDA-ARS research station in Marshfield, WI was designed to evaluate nutrient and pathogen losses with conventional and improved liquid dairy manure management practices for alfalfa-grass production. Observations from MAMA have also been used for parameterization and validation of computer simulation models of greenhouse gas (GHG) emissions from dairy farms.

            Cover Crop Chart (version 2.0): Helping producers choose cover crops in crop and forage production systems

              The Cover Crop Chart (v. 2.0) is designed to assist producers with decisions on the use of cover crops in crop and forage production systems. The chart, patterned after the periodic table of elements, includes information on 58 crop species that may be planted individually or in cocktail mixtures. Information on growth cycle, relative water use, plant architecture, seeding depth, forage quality, pollination characteristics, and nutrient cycling are included for most crop species.