U.S. flag

An official website of the United States government

Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP): ARDN Products

    ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) and described in detail here: www.tinyurl.com/icasa-mvl”. The original dataset presents evaluations of different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

    Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)

      Data are presented to evaluate different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

      Greenhouse Gas Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Bowling Green, Kentucky

        Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of N2O, CH4, and CO2resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NH4 NO3), poultry litter, and commercially available, enhanced-efficiency N fertilizers.

        Data from: Mitigating nitrogen pollution with under-sown legume-grass cover crop mixtures in winter cereals

          This study was part of a cover crop-based, organic rotational no-till cropping systems experiment conducted from 2015-2017 at Pennsylvania State University’s Russell E. Larson Agricultural Research Center in Rock Springs, PA, USA, employing a corn (*Zea mays* subsp. mays L.), soybean (*Glycine max* (L.) Merr.), spelt (*Triticum spelta* L.) rotation that is typical for feed and forage farmers in the Mid-Atlantic USA. Data include: Nitrate leaching from anion resin bags; Nitrous oxide fluxes from static chambers and isotopomers; Soil inorganic N including ammonium and nitrate; Soil moisture and temperature; Cover crop biomass as well as carbon and nitrogen content and nitrogen isotope ratios; Cash crop yields.

          RZWQM2

            Root Zone Water Quality Model 2 (RZWQM2) is a whole-system model for studying crop production and environmental quality under current and changing climate conditions. It emphasizes the effects of agricultural management practices on physical, chemical and biological processes. RZWQM2 is a one-dimensional model with a pseudo 2-dimensional drainage flow. Crop simulation options include the generic plant growth model, DSSAT-CSM 4.0 and HERMES SUCROS models. It also can simulate surface energy balance with components from the SHAW model and water erosion from the GLEAMS model. An automated parameter estimation algorithm (PEST) was added to RZWQM2 for objective model calibration and uncertainty analysis.