U.S. flag

An official website of the United States government

Soil Use - Hydric Soils database

    The Hydric Soils section presents the most current information about hydric soils. It updates information that was previously published in *Hydric Soils of the United States* and coordinates it with information that has been published in the *Federal Register*. It also includes the most recent set of field indicators of hydric soils. The database selection criteria are selected soil properties that are documented in Soil Taxonomy and were designed primarily to generate a list of potentially hydric soils from soil survey databases. Only criteria 1, 3, and 4 can be used in the field to determine hydric soils; however, proof of anaerobic conditions must also be obtained for criteria 1, 3, and 4 either through data or best professional judgment (from *Tech Note 1*). The primary purpose of these selection criteria is to generate a list of soil map unit components that are likely to meet the hydric soil definition.

    Data from: Gas emissions from dairy barnyards

      To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems.