U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Southeast Purdue Agricultural Center (SEPAC) drainage research data, 1984-2020

    This dataset contains research data obtained during a long-term subsurface drainage research project conducted at the Southeast Purdue Agricultural Center in Jennings County, Indiana, from 1984 to 2020. The original goals of the project were to evaluate the effects of different subsurface drain spacings (drainage intensities) on drain flow and corn growth and yield. Additional objectives were added over the years, especially related to movement of agricultural chemicals (nitrate-N, other nutrients, and pesticides) through the soil into the drainage waters.

    Metadata for: Climate-driven prediction of land water storage anomalies: An outlook for water resources monitoring across the conterminous United States

      These research data are associated with the manuscript entitled “Climate-driven prediction of land water storage anomalies: An outlook for water resources monitoring across the conterminous United States” (https://doi.org/10.1016/j.jhydrol.2020.125053). The study focused on the conterminous United States (CONUS) which extends over a region of contrasting climates with an uneven distribution of freshwater resources. Under climate change, an exacerbation of the contrast between dry and wet regions is expected across the CONUS and could drastically affect local ecosystems, agriculture practices, and communities. Hence, efforts to better understand long-term spatial and temporal patterns of freshwater resources are needed to plan and anticipate responses. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite observations provide estimates of large-scale land water storage changes with an unprecedented accuracy. However, the limited lifetime and observation gaps of the GRACE mission have sparked research interest for GRACE-like data reconstruction. This study developed a predictive modeling approach to quantify monthly land liquid water equivalence thickness anomaly (LWE) using climate variables including total precipitation (PRE), number of wet day (WET), air temperature (TMP), and potential evapotranspiration (PET). The approach builds on the achievements of the GRACE mission by determining LWE footprints using a multivariate regression on principal components model with lag signals. The performance evaluation of the model with a lag signals consideration shows 0.5 ≤ R2 ≤ 0.8 for 41.2% of the CONUS. However, the model’s predictive power is unevenly distributed. The model could be useful for predicting and monitoring freshwater resources anomalies for the locations with high model performances. The processed data used as inputs in the study are here provided including the GIS files of the different maps reported. Data reported in the csv files are 0.5-degree gridded monthly time-series of Land water Equivalence anomalies (USlwe163.csv), Potential evapotranspiration (USpet163.csv), Precipitation (USpre163.csv), above-ground air temperature (UStmp163.csv), and number of wet days (USwet163.csv) for 163 consecutive months over the period 2002 to 2017.

      Irrigation Residue Removal Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Lincoln, Nebraska

        USDA-ARS REAP Study (Ithaca, NE) - NEMEIRR Sustainable intensification of high-yielding production systems may help meet increasing demands for food, fuel, and fiber worldwide. Specifically, corn stover is being removed by producers for livestock purposes, and stover is also targeted as a primary 2nd generation biofuel feedstock. The NEMEIRR experimental objectives are to quantify how stover removal (no removal, moderate removal, high removal) and tillage management (no-till, disk) affect crop yields, soil organic carbon, soil greenhouse gas emissions, and other soil responses (microbial community structure, function; soil health). This experiment is conducted in a fully irrigated continuous corn system in the western Corn Belt, and soil and plant measurements have been taken since study establishment in 2001.

        SGP97 Surface: NCDC Summary of the Day COOP Precipitation Data

        NAL Geospatial Catalog
          The primary thrust of the cooperative observing program is the recording of 24-hour precipitation amounts. The observations are for the 24-hour period ending at the time of observation. Observer convenience or special program needs mean that observing times vary from station to station. However, the vast majority of observations are taken near either 7:00 AM or 7:00 PM local time. The National Weather Service (NWS) Cooperative Observer Daily Precipitation dataset was formed by extracting the daily incremental precipitation values provided in the National Climatic Data Center (NCDC) TD 3200 dataset.

          SGP97 GCIP/NESOB Surface: National Centers for Environmental Prediction (NCEP) Miscellaneous Hourly Precipitation Data

            This dataset contains all hourly precipitation data from the National Centers for Environmental Prediction (NCEP) stations. Stations that reported at standard or incremental times are also included in the various NESOB 1997 precipitation composite datasets. The miscellaneous precipitation dataset contains data from stations in the NESOB 1997 domain (94.5 W to 100.5W longitude and 34N to 39N latitude) and time period (01 April 1997 through 31 March 1998).

            SGP97 GCIP/NESOB Surface: National Centers for Environmental Prediction (NCEP) Miscellaneous Daily Precipitation Data

              This dataset contains all daily precipitation data from the National Centers for Environmental Prediction (NCEP) stations. Stations that reported at standard or incremental times are also included in the various NESOB 1997 precipitation composite datasets. The miscellaneous daily precipitation dataset contains data from stations in the NESOB 1997 domain (94.5 W to 100.5W longitude and 34N to 39N latitude) and time period (01 April 1997 through 31 March 1998).