Data from: Agro-environmental consequences of shifting from nitrogen- to phosphorus-based manure management of corn.

This experiment was designed to measure greenhouse gas (GHG) fluxes and related agronomic characteristics of a long-term corn-alfalfa rotational cropping system fertilized with manure (liquid versus semi-composted separated solids) from dairy animals. Different manure-application treatments were sized to fulfill two conditions: (1) an application rate to meet the agronomic soil nitrogen requirement of corn (“N-based” without manure incorporation, more manure), and (2) an application rate to match or to replace the phosphorus removal by silage corn from soils (“P-based” with incorporation, less manure). In addition, treatments tested the effects of liquid vs. composted-solid manure, and the effects of chemical nitrogen fertilizer. The controls consisted of non-manured inorganic N treatments (sidedress applications). These activities were performed during the 2014 and 2015 growing seasons as part of the Dairy Coordinated Agricultural Project, or Dairy CAP, as described below. The data from this experiment give insight into the factors controlling GHG emissions from similar cropping systems, and may be used for model calibration and validation after careful evaluation of the flagged data.

Dairy CAP logo

Maize-GAMER: Maize B73 RefGen_v3 5b+

This dataset from maize-GAMER is a new high-coverage and reproducible functional annotation of maize (Zea mays) protein coding genes based on Gene Ontology (GO) term assignments that covers all genes in the B73 RefGen_v3 5b+ set. Data are compressed gzip (.gz) files.

Plants and Crops

USDA-ARS Colorado Maize Water Productivity Dataset 2012-2013

The USDA-Agricultural Research Service carried out an experiment on water productivity in response to seasonal timing of irrigation of maize (Zea mays L.) at the Limited Irrigation Research Farm (LIRF) facility in northeastern Colorado (40°26’ N, 104°38’ W) starting in 2012. Twelve treatments involved different water availability targeted at specific growth-stages. This dataset includes data from the first two years, which were complete years with intact treatments. Data includes canopy growth and development (canopy height, canopy cover and LAI), irrigation, precipitation, and soil water storage measured periodically through the season; daily estimates of crop evapotranspiration; and seasonal measurement of crop water use, harvest index and crop yield. Hourly and daily weather data are also provided from the CoAgMET, Colorado’s network of meteorological information.

Maize field

Useful to Usable: Developing usable climate science for agriculture

Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers, was a USDA-funded research and extension project designed to improve the resilience and profitability of U.S. farms in the Corn Belt amid a changing climate. Over a six-year period from April 2011 - April 2017, 122 faculty, staff, graduate students, and undergraduate students from ten Midwestern universities contributed to this interdisciplinary project. Our team integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and outreach, communication, and marketing to improve the use and uptake of climate information for agricultural decision making. Together, and with members of the agricultural community, we developed a series of decision support tools, resource materials, and training methods to support data-driven decision making and the adoption of climate-resilient practices.

Plants and Crops