U.S. flag

An official website of the United States government


    GOSSYM is a dynamic, process-level simulation model of cotton growth and yield. GOSSYM essentially is a materials balance model which keeps track of carbon and nitrogen in the plant and water and nitrogen in the soil root zone. GOSSYM predicts the response of the field crop to variations in the environment and to cultural inputs. Specifically, the model responds to weather inputs of daily total solar radiation, maximum and minimum air temperatures, daily total wind run, and rainfall and/or irrigation amount. The model also responds to cultural inputs such as preplant and withinseason applications of nitrogen fertilizer, row spacing and within row plant density as they affect total plant population, and cultivation practices.

    Cotton Irrigation Tool

      A Web Application for Estimating Irrigated and Dryland Cotton Profitability using Modeled Yield Data.

      Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) Software

        Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes.


          SHOOTGRO emphasizes the development and growth of the shoot apex of small-grain cereals such as winter and spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). To better incorporate the variability typical in the field, up to six cohorts, or age classes, of plants are followed using a daily time step.


            Root Zone Water Quality Model 2 (RZWQM2) is a whole-system model for studying crop production and environmental quality under current and changing climate conditions. It emphasizes the effects of agricultural management practices on physical, chemical and biological processes. RZWQM2 is a one-dimensional model with a pseudo 2-dimensional drainage flow. Crop simulation options include the generic plant growth model, DSSAT-CSM 4.0 and HERMES SUCROS models. It also can simulate surface energy balance with components from the SHAW model and water erosion from the GLEAMS model. An automated parameter estimation algorithm (PEST) was added to RZWQM2 for objective model calibration and uncertainty analysis.


              PhenologyMMS is a simulation model that outlines and quantifies the developmental sequence of different crops under varying levels of water deficits, provides developmental information relevant to each crop, and is intended to be used either independently or inserted into existing crop growth models.

              USDA-ARS Colorado Maize Water Productivity Dataset 2012-2013

                The USDA-Agricultural Research Service carried out an experiment on water productivity in response to seasonal timing of irrigation of maize (*Zea mays* L.) at the Limited Irrigation Research Farm (LIRF) facility in northeastern Colorado (40°26’ N, 104°38’ W) starting in 2012. Twelve treatments involved different water availability targeted at specific growth-stages. This dataset includes data from the first two years, which were complete years with intact treatments. Data includes canopy growth and development (canopy height, canopy cover and LAI), irrigation, precipitation, and soil water storage measured periodically through the season; daily estimates of crop evapotranspiration; and seasonal measurement of crop water use, harvest index and crop yield. Hourly and daily weather data are also provided from the CoAgMET, Colorado’s network of meteorological information.

                Useful to Usable: Developing usable climate science for agriculture

                  Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers, was a USDA-funded research and extension project designed to improve the resilience and profitability of U.S. farms in the Corn Belt amid a changing climate. Over a six-year period from April 2011 - April 2017, 122 faculty, staff, graduate students, and undergraduate students from ten Midwestern universities contributed to this interdisciplinary project. Our team integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and outreach, communication, and marketing to improve the use and uptake of climate information for agricultural decision making. Together, and with members of the agricultural community, we developed a series of decision support tools, resource materials, and training methods to support data-driven decision making and the adoption of climate-resilient practices.

                  Environmental Policy Integrated Climate (EPIC) Model

                    Environmental Policy Integrated Climate (EPIC) model is a cropping systems model that was developed to estimate soil productivity as affected by erosion. EPIC simulates approximately eighty crops with one crop growth model using unique parameter values for each crop. It can be configured for a wide range of crop rotations and other vegetative systems, tillage systems, and other management strategies. It predicts effects of management decisions on soil, water, nutrient and pesticide movements, and their combined impact on soil loss, water quality, and crop yields for areas with homogeneous soils and management.