U.S. flag

An official website of the United States government

Data from: Soil organic carbon and isotope composition response to topography and erosion in Iowa

    The dataset includes topographic information, soil properties, and 137Cs levels collected from a 15 ha cropland under soybean/maize (C3/C4) rotation in June 2002. The cropland is located in the central-western part of the Walnut Creek watershed, Story County, Iowa. 128 sampling locations were collected and three soil samples were obtained using a 3.2 cm-diameter push probe from the 0 to 30 cm soil layer within a 1 m × 1 m quadrat at each sampling location. Deeper soil samples were collected from 30 to 50 cm layers in locations where sediment deposition was observed. The three samples from each sampling location were mixed and analyzed to determine soil properties, SOC content and its carbon (C) isotope composition (C12 to C13 ratio), and 137Cs levels. For landscape topography of each sampling location, topographic metrics were derived from a digital elevation mode using LiDAR (Light Detection and Ranging) data. These data are useful in investigating the fate of eroded SOC in croplands and its responses to landscape topography.

    NAL Geodata

      The United States Department of Agriculture National Agricultural Library Geospatial Data catalog contains geographic location-based agricultural research data, imagery, research location context, and more. Users can search records representing a variety of datasets, maps and graphics, aerial and phenocam images, and other services.


        Panzea is an NSF-funded project called "Biology of Rare Alleles in Maize and its Wild Relatives". We are investigating the connection between phenotype (what we see) and genotype (the genes underlying the phenotype) - of complex traits in maize and its wild relative, teosinte, and specifically in how rare genetic variations contribute to overall plant function. These studies will enrich our knowledge of evolution, sustainable agriculture, and genetic diversity and conservation. Over the 10 years of the project, we have trained many new scientists at all levels and generated key resources for the public, teachers, and scientific researchers.

        Data from: Gas emissions from dairy barnyards

          To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems.

          Low-Disturbance Manure Incorporation

            The LDMI experiment (Low-Disturbance Manure Incorporation) was designed to evaluate nutrient losses with conventional and improved liquid dairy manure management practices in a corn silage (*Zea mays*) / rye cover-crop (*Secale cereale*) system. The improved manure management treatments were designed to incorporate manure while maintaining crop residue for erosion control. Field observations included greenhouse gas (GHG) fluxes from soil, soil nutrient concentrations, crop growth and harvest biomass and nutrient content, as well as monitoring of soil physical and chemical properties. Observations from LDMI have been used for parameterization and validation of computer simulation models of GHG emissions from dairy farms (Gaillard et al., submitted). The LDMI experiment was performed as part of the Dairy CAP.

            Feedstock Readiness Level Evaluations Summary Table v3.0

              The table in this dataset collates the results of the FSRL evaluations listed under the Farm2Fly Ag Data Commons datasets to enable users to quickly identify, review, and compare available evaluations. Feedstock readiness level evaluations are performed for a specific feedstock-conversion process combination and for a particular region. FSRL evaluations complement evaluations of Fuel Readiness Level (FRL) and environmental progress.

              Manure application methods for alfalfa-grass

                The MAMA experiment (Manure Application Methods for Alfalfa-Grass), from the USDA-ARS research station in Marshfield, WI was designed to evaluate nutrient and pathogen losses with conventional and improved liquid dairy manure management practices for alfalfa-grass production. Observations from MAMA have also been used for parameterization and validation of computer simulation models of greenhouse gas (GHG) emissions from dairy farms.

                Weevils of North America (WoNA)

                  The Weevils of North America (WoNA) (http://symbiota4.acis.ufl.edu/scan/portal/checklists/checklist.php?cl=1) is an emerging resource for occurrence information, habitus photographs, legacy descriptions, and interactive identification keys for the almost 400 genera and 3300 species of weevils (Coleoptera: Curculionoidea) in North America.