Gas Flux from Band Application

Gas Flux from Band Application (GF-Band) is an MS Excel spreadsheet tool that calculates the effective gas flux from soil of a multiple-band area to which manure or fertilizer has been applied in bands. One spreadsheet is for circular gas flux chambers and another is for rectangular chambers.

Agroecosystems & Environment

CALMIM

The California Landfill Methane Inventory Model is a 1-dimensional soil gas transport and oxidation model that calculates annual landfill methane emissions based on the cover soil characteristics and annual climatic data for a given global location.

Agroecosystems & Environment

FilmPC

Estimates the film permeability (i.e., mass transfer coefficient) from the analysis of permeability cell concentration data.

Agroecosystems & Environment

Greenhouse Gas Emissions from Croplands

This download provides three datasets aggregated from the original output of the 172 crops; total emissions from croplands, per kilocalorie emissions from croplands and per food kilocalorie emissions from cropland.

Agroecosystems & Environment

Data from: Underestimation of N2O emissions in a comparison of the DayCent, DNDC, and EPIC 1 models

Process-based models are increasingly used to study mass and energy fluxes from agro-ecosystems, including nitrous oxide (N2O) emissions from agricultural fields. This data set is the output of three process-based models – DayCent, DNDC, and EPIC – which were used to simulate fluxes of N2O from dairy farm soils. The individual models' output and the ensemble mean output were evaluated against field observations from two agricultural research stations in Arlington, WI and Marshfield, WI. These sites utilize cropping systems and nitrogen fertilizer management strategies common to Midwest dairy farms.

Dairy CAP logo

Data from: Comparative farm-gate life cycle assessment of oilseed feedstocks in the Northern Great plains

This MS Word document contains the oilseed feedstock farm-gate model inventories, results, and uncertainty analyses for the Northern Great Plains discussed in Moeller et. al 2017. Analysis was conducted using IPCC GHG standardized emissions. Methodology is detailed in the associated publication (doi: 10.1007/s41247-017-0030-3). The supplementary information contains the names of the ecoinvent inventories; oilseed yield, seeding rates, and fertilization rates per USDA crop management zone (CMZ); climate change, freshwater eutrophication, and marine eutrophication percent contributions ReCiPe results per CMZ; Monte Carlo uncertainty results per CMZ; and farm-gate energy balance analysis results per CMZ.

Data from: Gas emissions from dairy barnyards

To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems.

DairyCAP logo