Data from: Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments.

Genomics and Genetics

Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks: site environmental data, individual tree stem and leaf physiological data, and analyses

We investigated whether oak species in the Chiricahua Mountains were 1) elevationally stratified, 2) whether that stratification was correlated with temperature minima, maxima, and water availability, 3) if physiological tolerances to freezing or drought stress correlated with elevation ranges, and 4) if traits important to local (elevation) distributions were correlated with climatic values of the wider species ranges. Data were collected at field sites from wild, adult trees in the Chiricahua Mountains, Arizona, USA from 2014-2015.

Leaf level trade-off chart