U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Data from: Gas emissions from dairy barnyards

    To assess the magnitude of greenhouse gas (GHG) fluxes, nutrient runoff and leaching from dairy barnyards and to characterize factors controlling these fluxes, nine barnyards were built at the U.S. Dairy Forage Research Center Farm in Prairie du Sac, WI (latitude 43.33N, longitude 89.71W). The barnyards were designed to simulate outdoor cattle-holding areas on commercial dairy farms in Wisconsin. Each barnyard was approximately 7m x 7m; areas of barnyards 1-9 were 51.91, 47.29, 50.97, 46.32, 45.64, 46.30, 48.93, 48.78, 46.73 square meters, respectively. Factors investigated included three different surface materials (bark, sand, soil) and timing of cattle corralling. Each barnyard included a gravity drainage system that allowed leachate to be pumped out and analyzed. Each soil-covered barnyard also included a system to intercept runoff at the perimeter and drain to a pumping port, similar to the leachate systems.

    Low-Disturbance Manure Incorporation

      The LDMI experiment (Low-Disturbance Manure Incorporation) was designed to evaluate nutrient losses with conventional and improved liquid dairy manure management practices in a corn silage (*Zea mays*) / rye cover-crop (*Secale cereale*) system. The improved manure management treatments were designed to incorporate manure while maintaining crop residue for erosion control. Field observations included greenhouse gas (GHG) fluxes from soil, soil nutrient concentrations, crop growth and harvest biomass and nutrient content, as well as monitoring of soil physical and chemical properties. Observations from LDMI have been used for parameterization and validation of computer simulation models of GHG emissions from dairy farms (Gaillard et al., submitted). The LDMI experiment was performed as part of the Dairy CAP.

      Measured Annual Nutrient loads from AGricultural Environments (MANAGE) database

        The MANAGE (Measured Annual Nutrient loads from AGricultural Environments) database was developed to be a readily-accessible, easily-queried database of site characteristic and field-scale nutrient export data. Initial funding for MANAGE was provided by USDA-ARS to support the USDA Conservation Effects Assessment Project (CEAP) and the Texas State Soil and Water Conservation Board as part of their mission to understand and mitigate agricultural impacts on water quality. MANAGE contains data from a vast majority of published peer-reviewed N and P export studies on homogeneous cultivated, pasture/range, and forested land uses in the US under natural rainfall-runoff conditions, as well as artificially drained agricultural land. Thus MANAGE facilitates expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques, and it provides valuable data for modeling and decision-making related to agricultural runoff.

        Effects of tannin in dairy cow diets and land application of manure on soil gas fluxes and nitrogen dynamics

          This experiment was designed to determine if tannin concentration and nitrogen (N) content of field-applied dairy cow manure influences greenhouse gas (GHG) emissions from soil, soil N mineralization, and plant productivity. The data presented include experimental design, soil physical characteristics, gas fluxes, soil nitrogen at 0-10 cm depth, soil nitrogen at 10-20 cm depth, chemical characteristics of dairy manure, and crop yield and biomass characteristics.

          Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190)

            The Sustainable Corn CAP (Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems) was a multi-state transdisciplinary project supported by the USDA National Institute of Food and Agriculture (Award No. 2011-68002-30190). Research experiments were located through the U.S. Corn Belt and examined farm-level adaptation practices for corn-based cropping systems to current and predicted impacts of climate change.