U.S. flag

An official website of the United States government

Data from: Chapter 5: Energy Use in Agriculture. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018

    The report 'U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018' serves to estimate U.S. GHG emissions for the agricultural sector, to quantify uncertainty in emission estimates, and to estimate the potential of agriculture to mitigate U.S. GHG emissions. This dataset contains tabulated data from the figures and tables presented in Chapter 5, Energy Use in Agriculture, of the report. Data are presented for carbon dioxide emissions from on-farm energy use. Please refer to the report for full descriptions of and notes on the data.

    Data from: Chapter 4: Carbon Stocks & Stock Changes in U.S. Forests. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018

      The report 'U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018' serves to estimate U.S. GHG emissions for the agricultural sector, to quantify uncertainty in emission estimates, and to estimate the potential of agriculture to mitigate U.S. GHG emissions. This dataset contains tabulated data from the figures and tables presented in Chapter 4, Carbon Stocks & Stock Changes in U.S. Forests, of the report. Data are presented for above and below-ground carbon stocks and stock changes.

      Data from: Chapter 3: Cropland Agriculture. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018

        The primary greenhouse gas (GHG) sources for agriculture are nitrous oxide (N2O) emissions from cropped and grazed soils, methane (CH4) emissions from ruminant livestock production and rice cultivation, and CH4 and N2O emissions from managed livestock waste. This dataset contains tabulated data from the figures and tables presented in Chapter 3, Cropland Agriculture, of the report. Data are presented for Cropland Soils (N2O), Rice Cultivation + Residue Burning (CH4 + N2O), and Agricultural Soil Carbon and Amendments (CO2).

        Data from: Chapter 2- Livestock and Grazed Lands Emissions. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018

          The primary greenhouse gas (GHG) sources for agriculture are nitrous oxide (N2O) emissions from cropped and grazed soils, methane (CH4) emissions from ruminant livestock production and rice cultivation, and CH4 and N2O emissions from managed livestock waste. This dataset contains tabulated data from the figures and tables presented in Chapter 2, Livestock and Grazed Lands Emissions, of the report. This chapter covers carbon dioxide, methane, and nitrous oxide emissions and removals due to enteric fermentation, animal waste management, and land use for confined and grazed animals.

          Data from: U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018

            The primary greenhouse gas (GHG) sources for agriculture are nitrous oxide (N2O) emissions from cropped and grazed soils, methane (CH4) emissions from ruminant livestock production and rice cultivation, and CH4 and N2O emissions from managed livestock waste. This dataset contains zipped, tabulated data from the figures and tables, and maps of the entire report. Data are presented for Cropland Soils (N2O), Enteric Fermentation (CH4), Managed Livestock Waste (CH4 + N2O), Grazed Lands (CH4 + N2O), Rice Cultivation + Residue Burning (CH4 + N2O), Energy Use, Forests, Harvested Wood, Urban Trees, and Agricultural Soils.

            NWISRL South Farm Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Kimberly, Idaho

              NWISRL South Farm Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Kimberly, Idaho We report N2O emissions along with CO2 and CH4 from a silage corn (2013)–barley (2014)–alfalfa (2015) rotation under conventional tillage and sprinkler irrigation. The main study objectives were to evaluate the effectiveness of an enhanced-efficiency fertilizer (SuperU; stabilized granular urea with urease and nitrification inhibitors) to reduce N2O emissions when compared to granular urea, and determine GHG emissions from fall-applied dairy manure or composted dairy manure and spring-applied dairy manure.

              Carbon Crops Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Morris, Minnesota

                The overall goal of the Carbon Crop study, established in 2000, was to assess strategies for increasing soil C sequestration including converting to no till systems and including perennial grasses (e.g., switchgrass and big bluestem) Overall, the goal of the study has remained constant, although individual treatments were changed after an incremental soil sampling, in response to new hypotheses and questions.

                Central Mississippi River Basin LTAR Dataset: NFARM, Inorganic N, & C Production, 2016-2018

                  In situ denitrification rates in intact soil cores from the Central Mississippi River Basin (CMRB) LTAR site in MO quantified by directly measuring dinitrogen (N2) and nitrous oxide (N2O) production via the Nitrogen-Free Air Recirculation Method (N-FARM) from 2016-2018. 10-day laboratory incubations provided estimates of ancillary soil data, including microbial respiration and potential net N mineralization and nitrification.

                  Gulf Atlantic Coastal Plain LTAR Dataset: NFARM, Inorganic N, & C Production, 2016-2018

                    In situ denitrification rates in intact soil cores from the Gulf Atlantic Coastal Plain (GACP) LTAR site in GA quantified by directly measuring dinitrogen (N2) and nitrous oxide (N2O) production via the Nitrogen-Free Air Recirculation Method (N-FARM) from 2016-2018. 10-day laboratory incubations provided estimates of ancillary soil data, including microbial respiration and potential net N mineralization and nitrification.