U.S. flag

An official website of the United States government

Data from: Grain inoculated with different growth stages of the fungus, Aspergillus flavus, affect the close-range foraging behavior by a primary stored product pest, Sitophilus oryzae (Coleoptera: Curculionidae)

    Our goals with this dataset were to 1) isolate, culture, and identify two fungal life stages of Aspergillus flavus, 2) characterize the volatile emissions from grain inoculated by each fungal morphotype, and 3) understand how microbially-produced volatile organic compounds (MVOCs) from each fungal morphotype affect foraging, attraction, and preference by S. oryzae. This dataset includes that derived from headspace collection coupled with GC-MS, where we found the sexual life stage of A. flavus had the most unique emissions of MVOCs compared to the other semiochemical treatments.

    Data from: Experiments on Jackson trap efficiency capturing Bactrocera dorsalis and Zeugodacus cucurbitae

      We tested the effects of three important components of Jackson traps on efficiency of capture of two important fruit fly species, using the “standard” (i.e., as they are used in the state-wide surveillance program in California) and alternatives: Insecticide (Naled, DDVP or None), type of adhesive on the sticky panel (Seabright Laboratories Stickem Special Regular or Stickem Special HiTack), and use of a single or combination male lure (Methyl eugenol and/or cuelure). Experiments were conducted in large outdoor carousel olfactometers with known numbers of Bactrocera dorsalis and Zeugodacus cucurbitae and by trapping wild populations of the same two species. Lures were aged out to eight weeks to develop a comprehensive dataset on trap efficiency of the various combinations.

      Data from: Attraction, mobility, and preference by Lasioderma serricorne (F.) (Coleoptera: Ptinidae) to microbially-mediated volatile emissions by two species of fungi in stored grain

        Our goals were to 1) isolate, and culture two fungal morphotypes, 2) characterize the volatile emissions from grain inoculated by each fungal morphotype (Aspergillus flavus or Fusarium spp.) compared to uninoculated and sanitized grain, and 3) understand how MVOCs from each morphotype affects mobility, attraction, and preference by L. serricorne.