U.S. flag

An official website of the United States government

GENOSIM

    The genosim package simulates genotypes, breeding values, and phenotypes; simulates DNA sequence read depth (numbers of A and B alleles); and resolves SNP conflicts between parent and offspring genotypes.

    Code from: Using cameras for precise measurement of two-dimensional plant features

      Images are used frequently in plant phenotyping to capture measurements. This chapter offers a repeatable method for capturing two-dimensional measurements of plant parts in field or laboratory settings using a variety of camera styles (cellular phone, DSLR), with the addition of a printed calibration pattern. The method is based on calibrating the camera using information available from the EXIF tags from the image, as well as visual information from the pattern. Code is provided to implement the method, as well as a dataset for testing. We include steps to verify protocol correctness by imaging an artifact. The use of this protocol for two-dimensional plant phenotypoing will allow data capture from different cameras and environments, with comparison on the same physical scale.

      Data from: Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.

        This feeding trial was designed to investigate two separate questions. The first question is, “What are the effects of substituting two non-fiber carbohydrate (NFC) sources at two rumen-degradable protein (RDP) levels in the diet on apparent total-tract nutrient digestibility, manure production and nitrogen (N) excretion in dairy cows?”. This is relevant because most of the N ingested by dairy cows is excreted, resulting in negative effects on environmental quality. The second question is, “Is phenotypic residual feed intake (pRFI) correlated with feed efficiency, N use efficiency, and metabolic energy losses (via urinary N and enteric CH4) in dairy cows?”. The pRFI is the difference between what an animal is expected to eat, given its level of productivity, and what it actually eats. The goal was to determine whether production of CH4, urinary N or fecal N is a driver of pRFI.

        The Triticeae Toolbox

          [The Triticeae Toolbox](https://triticeaetoolbox.org/) (T3) webportal hosts data generated by the Triticeae Coordinated Agricultural Project (CAP), funded by the National Institute for Food and Agriculture (NIFA) of the United States Department of Agriculture (USDA). T3 contains SNP, phenotypic, and pedigree data from wheat and barley germplasm in the Triticeae CAP integrating rapidly expanding DNA marker and sequence data with traditional phenotypic data.

          Data from: Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics

            Non-targeted metabolomics, combined with transcriptomics via a NimbleGen array platform, are used to study how gene expression and metabolite profiles can be linked to generate a more detailed mechanistic appreciation of the cellular response to both desiccation and rehydration in the C4 resurrection grass, *Sporobolus stapfianus* Gandoger, as a member of a group of important forage grasses.

            Data from: Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.)

              Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS). The plants were genotyped using genotyping-by-sequencing (GBS). A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW), plant height (PH), leaf chlorophyll content (LCC), and stomatal conductance (SC). For each trait, a stress susceptibility index (SSI) was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (*Medicago truncatula*). Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

              Data from: Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

                Virulence shifts in populations of *Puccinia striiformis* f. sp. *tritici* (*Pst*), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of *Pst*, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments.

                ELIGULUM-A regulates lateral branch and leaf development. Original figure files

                  TIFF and JPEG files for the photographs used in constructing figures and supplemental figures in the manuscript, "ELIGULUM-A regulates lateral branch and leaf development," submitted to Plant Physiology. The images document a mutation that alters most of the structures of the plant and how the ELIGULUM-A gene interacts with different developmental pathways. The Figure Legend files describe the images individually.

                  Genomes To Fields 2016

                    Phenotypic, genotypic, and environment data for the 2016 field season: The data is stored in [CyVerse](http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_G2F_2016_Data_Mar_2018).