U.S. flag

An official website of the United States government

Ag Data Commons migration begins October 18, 2023

The Ag Data Commons is migrating to a new platform – an institutional portal on Figshare. Starting October 18 the current system will be available for search and download only. Submissions will resume after the launch of our portal on Figshare in November. Stay tuned for details!

Data from: Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems

    This study was initiated to evaluate, during the following corn (*Zea mays* L.) phase, the effects of interseeded cover crops on soil temperature, soil water balances, evapotranspiration, infiltration, and yield and water use efficiency of corn. The study was conducted at the USDA Beltsville Agricultural Research Center, Beltsville, MD from 2017 through 2020. The cropping systems under study were primarily sequences of corn-soybean (*Glycine max* L.)-wheat (*Triticum aestivum* L.)-double crop soybean all planted with no-tillage management.

    Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP): ARDN Products

      ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using the ICASA vocabulary, as recommended by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) and described in detail here: www.tinyurl.com/icasa-mvl”. The original dataset presents evaluations of different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

      Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida: ARDN products

        ARDN (Agricultural Research Data Network) annotations for "Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida". The ARDN project (https://data.nal.usda.gov/ardn) is a network of datasets harmonized and aggregated using a common vocabulary termed ICASA. ICASA is a recommended data dictionary by USDA NAL (https://data.nal.usda.gov/data-dictionary-examples) described in detail here: www.tinyurl.com/icasa-mvl. Research was conducted at the North Florida Research and Education Center - Suwannee Valley, located near Live Oak, Florida (30°18’22” N, 82°54’00” W). Corn, carrots, peanuts, and rye (cover crop) were grown on Hurricane, Chipley, and Blanton soil complexes that are all over 90% sand. The experimental design utilized a randomized complete block design with split plot that incorporated two fields with eight blocks (treatment replicates) and fifteen plots per block. The main plots contained four irrigation treatments, and the sub-plots contained three different nitrogen rates. The SMS irrigation treatment contained three additional nitrogen treatments. The north field in the study (System 2) was a corn-cover crop-peanut-cover crop rotation, while the south field (System 1) was a corn-carrot-peanut-cover crop rotation. During each growing season, soil moisture was monitored using capacitance type soil moisture sensors, soil nitrogen was measured through bi-weekly soil samples at four depths, and biomass was collected four times with the final sample being collected just prior to harvest.

        Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from University of Georgia Stripling Irrigation Research Park (SIRP)

          Data are presented to evaluate different irrigation and fertilization treatments (corn and cotton have three nitrogen fertilization and three irrigation treatments, peanut has nine irrigation treatments and no N fertilizer treatment) at the University of Georgia’s Stripling Irrigation Research Park (SIRP) located near Camilla, Georgia in a 4 ha research field.

          LTAR Upper Mississippi River Basin - Morris - Swan Lake Research Farm Phenocam

          NAL Geospatial Catalog
            The PhenoCam network is collecting color and near infrared images year-round using cameras in fixed positions on agricultural lands including a site located on the Swan Lake Research Farm. The network effort was initiated in 2015 at this long-term, plot-scale research site. The camera at the research farm on focused a plot-scale, replicated research study that was established in 1997 to assess the long-term impacts of various tillage management options on soil organic carbon

            Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota

              Tillage is decreasing globally due to recognized benefits of fuel savings and improved soil health in the absence of disturbance. However, a perceived inability to control weeds effectively and economically hinders no-till adoption in organic production systems in the Upper Midwest, USA. A strip-tillage (ST) strategy was explored as an intermediate approach to reducing fuel use and soil disturbance, and still controlling weeds. An 8-year comparison was made between two tillage approaches, one primarily using ST the other using a combination of conventional plow, disk and chisel tillage [conventional tillage (CT)].

              Alternative Biomass Production Study for Resilient Economic Agricultural Practices in Morris, Minnesota

                The Tillage Study was established in 1997 to assess the effect of a variety of tillage intensities on soil C. The initial eight treatments included no-tillage, moldboard + disk tillage, chisel tillage, and fall and spring residue management, with or without strip-tillage and strip-tillage + subsoiling (Archer and Reicosky, 2009). In 2004, treatments were reduced to no-tillage, moldboard tillage, and fall and spring residue management without strip-tillage, but all had an early or late planting date. The last comprehensive set of soil samples were collected in 2006.

                Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) - Field trial data from Live Oak, Florida

                  Research was conducted at the North Florida Research and Education Center - Suwannee Valley, located near Live Oak, Florida (30°18’22” N, 82°54’00” W). Corn, carrots, peanuts, and rye (cover crop) were grown on Hurricane, Chipley, and Blanton soil complexes that are all over 90% sand. The experimental design utilized a randomized complete block design with split plot that incorporated two fields with eight blocks (treatment replicates) and fifteen plots per block. The main plots contained four irrigation treatments, and the sub-plots contained three different nitrogen rates. The SMS irrigation treatment contained three additional nitrogen treatments. The north field in the study (System 2) was a corn-cover crop-peanut-cover crop rotation, while the south field (System 1) was a corn-carrot-peanut-cover crop rotation. During each growing season, soil moisture was monitored using capacitance type soil moisture sensors, soil nitrogen was measured through bi-weekly soil samples at four depths, and biomass was collected four times with the final sample being collected just prior to harvest.

                  Data from: Soil carbon and nitrogen data during eight years of cover crop and compost treatments in organic vegetable production

                    This article includes the raw data, descriptive data (means) and inferential statistics (95% confidence intervals) on the effects of compost and cover cropping over an 8 year period in the Salinas Organic Cropping Systems (SOCS) experiment including: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years.