U.S. flag

An official website of the United States government

The Ag Data Commons is migrating

The Ag Data Commons is migrating to a new institutional portal on Figshare. The current system is available for search and download only. The new platform is open for submission with assistance from Ag Data Commons curators. Please contact NAL-ADC-Curator@usda.gov, if you need to publish or update your datasets.

NWISRL South Farm Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Kimberly, Idaho

    NWISRL South Farm Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Kimberly, Idaho We report N2O emissions along with CO2 and CH4 from a silage corn (2013)–barley (2014)–alfalfa (2015) rotation under conventional tillage and sprinkler irrigation. The main study objectives were to evaluate the effectiveness of an enhanced-efficiency fertilizer (SuperU; stabilized granular urea with urease and nitrification inhibitors) to reduce N2O emissions when compared to granular urea, and determine GHG emissions from fall-applied dairy manure or composted dairy manure and spring-applied dairy manure.

    Data from: Soil carbon and nitrogen data during eight years of cover crop and compost treatments in organic vegetable production

      This article includes the raw data, descriptive data (means) and inferential statistics (95% confidence intervals) on the effects of compost and cover cropping over an 8 year period in the Salinas Organic Cropping Systems (SOCS) experiment including: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years.

      Data from: Temporal and agricultural factors influence E. coli survival in soil and transfer to cucumbers

        Data from the current study were collected to examine the survival of non-pathogenic Escherichia coli and transfer to cucumbers grown in same field in two separate years. Soil moisture, total nitrogen, nitrate, total carbon, soluble carbon, soluble solids, rainfall, soil temperature and air temperature, along with the number of days needed for E. coli to decline by 4 log CFU/gdw, were included in random forest models used to a) predict 4-log declines of E. coli inoculated to soils and b) transfer of E. coli to cucumbers from soils with different biological soil amendments.