U.S. flag

An official website of the United States government

PhenoCam images from JERNORT site, Jornada Experimental Range, New Mexico, USA since 2014

    This data set consists of repeat digital imagery from the tower-mounted digital cameras (hereafter, PhenoCams) at the Jornada Experimental Range. JER is a member of the PhenoCam network, which has as its mission to serve as a long-term, continental-scale, phenological observatory. Imagery is uploaded to the PhenoCam server every 30 minutes. The archived images provide a permanent record that can be visually-inspected to determine the phenological state of the vegetation at any point in time. Vegetation greenness metrics (e.g., GCC) derived from the ratio of the green color band to sum of red, green, and blue color bands serve as proxies for vegetation greenness. Greenness metrics can be extracted from the images using simple image processing methods in 1-day or 3-day increments.

    PhenoCam images from JERSAND site, Jornada Experimental Range, New Mexico, USA since 2014

      This data set consists of repeat digital imagery from the tower-mounted digital cameras (hereafter, PhenoCams) at the Jornada Experimental Range. JER is a member of the PhenoCam network, which has as its mission to serve as a long-term, continental-scale, phenological observatory. Imagery is uploaded to the PhenoCam server every 30 minutes. The archived images provide a permanent record that can be visually-inspected to determine the phenological state of the vegetation at any point in time. Vegetation greenness metrics (e.g., GCC) derived from the ratio of the green color band to sum of red, green, and blue color bands serve as proxies for vegetation greenness. Greenness metrics can be extracted from the images using simple image processing methods in 1-day or 3-day increments.

      The Bronson Files, Dataset 5, Field 105, 2014

        Active optical proximal wheat canopy sensing spatial data and including additional related metrics such as canopy thermal and height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with the raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2014 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled. Acquired data using USDA Maricopa first mobile platforms, such as the Proximal Sensing Cart Mark1, SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. The weekly proximal sensing data collected include canopy reflectance at six wavelengths, ultrasonic distance sensing of canopy height, and infrared thermometry. Ten levels gradient irrigation application from linear move sprinkler system were applied. Soil physical texture and fertility chemistry results are available. Durum wheat data includes in-season biomass and plant N content, final total biomass, grain yield, grain nitrogen, and yellow berry assessment.

        The Bronson Files, Dataset 4, Field 105, 2013

          Active optical proximal wheat canopy sensing spatial data and including additional related metrics such as canopy thermal and height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with the raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2013 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled. Acquired data using USDA Maricopa first mobile platforms, such as the Proximal Sensing Cart Mark1, SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. The weekly proximal sensing data collected include canopy reflectance at six wavelengths, ultrasonic distance sensing of canopy height, and infrared thermometry. Ten levels gradient irrigation application from linear move sprinkler system were applied. Soil physical texture and fertility chemistry results are available. Yield and seed information is presented.

          The Bronson Files, Dataset 3, Field 107, 2013

            Small dataset describing a unique rubber bush, in the context of greater published research Active optical proximal cotton canopy sensing spatial data and including additional related metrics canopy thermal and height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2013 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled. Acquired data using USDA Maricopa first mobile platforms, such as the Proximal Sensing Cart Mark 1. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. The weekly proximal sensing data collected include canopy reflectance at six wavelengths, ultrasonic distance sensing of canopy height, and infrared thermometry. Limited soil sampling and final harvest information is included.

            IMAP: Image Mapping & Analytics for Phenotyping

              A set of PYTHON programs to implement image processing of ground and aerial images by offering via graphical user interface (GUI) 1) plot-level metrics extraction through a series of algorithms for image conversion, band math, radiometric/geometric calibrations, segmentation, masking, adaptive region of interest (ROI), gridding, heatmap, and batch process, 2) GIS interface for GeoTIFF pixels to Lat/Lon, UTM conversion, read/write shapefile, Lat/Lon to ROI, grid to polygon, and 3) utility GUI functions for zooming, panning, rotation, images to video, file I/O, and histogram.

              The Bronson Files, Dataset 2, Field 17, 2013

                Active optical proximal cotton canopy sensing spatial data and including additional related metrics canopy thermal and height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2013 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled. Acquired data using USDA Maricopa first mobile platforms, such as the Proximal Sensing Cart Mark 1. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. The weekly proximal sensing data collected include canopy reflectance at six wavelengths, ultrasonic distance sensing of canopy height, and infrared thermometry. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined 20 or more weeks in the season with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).

                Data from: Release and establishment of the weevil Mecinus janthiniformis for biological control of Dalmatian toadflax in southern California

                  We monitored populations of the stem weevil, Mecinus janthiniformis, the invasive alien weed Dalmatian toadflax (Linaria dalmatica) and other vegetation to document the impact of using M. janthiniformis as a biological control agent of L. dalmatica. Weevils were released in 2008 and again in 2014 after a wild fire. The results document increases and spread of weevil populations, decrease in Dalmatian toadflax and changes in cover of some vegetation classes.

                  The Bronson Files, Dataset 1, Field 17, 2012

                    Active optical proximal cotton canopy sensing spatial data and including additional related metrics such as thermal are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2012 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled. Acquired data using USDA Maricopa first mobile platforms, such as the Proximal Sensing Cart Mark 1, and via people. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. The weekly proximal sensing data collected include canopy reflectance at six wavelengths, ultrasonic distance sensing of canopy height, and infrared thermometry. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined 20 or more weeks in the season with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).